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Abstract

A standard assumption in machine learning is the exchangeability of data, which
is equivalent to assuming that the examples are generated from the same prob-
ability distribution independently. This paper is devoted to testing the assump-
tion of exchangeability on-line: the examples arrive one by one, and after receiv-
ing each example we would like to have a valid measure of the degree to which the
assumption of exchangeability has been falsified. Such measures are provided
by exchangeability martingales. We extend known techniques for constructing
exchangeability martingales and show that our new method is competitive with
the martingales introduced before. Finally we investigate the performance of
our testing method on two benchmark datasets, USPS and Statlog Satellite
data; for the former, the known techniques give satisfactory results, but for the
latter our new more flexible method becomes necessary.
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1 Introduction

Many machine learning algorithms have been developed to deal with real-life
high dimensional data. In order to state and prove properties of such algorithms
it is standard to assume that the data satisfy the exchangeability assumption
(although some algorithms make different assumptions or, in the case of predic-
tion with expert advice, do not make any statistical assumptions at all). These
properties can be violated if the assumption is not satisfied, which makes it
important to test the data on satisfying it.

Note that the popular assumption that the data is i.i.d. (independent and
identically distributed) has the same meaning for testing as the exchangeability
assumption. A joint distribution of an infinite sequence of examples is exchange-
able if it is invariant w.r. to any permutation of examples. Hence if the data
is i.i.d., its distribution is exchangeable. On the other hand, by de Finetti’s
theorem (see, e.g., Schervish, 1995, p. 28) any exchangeable distribution on the
data (a potentially infinite sequence of examples) is a mixture of distributions
under which the data is i.i.d. Therefore, testing for exchangeability is equivalent
to testing for being i.i.d.

Traditional statistical approaches to testing are inappropriate for high di-
mensional data (see, e.g., Vapnik, 1998, pp. 6–7). To address this challenge a
previous study (Vovk et al., 2003) suggested a way of on-line testing by employ-
ing the theory of conformal prediction and calculating exchangeability martin-
gales. Basically testing proceeds in two steps. The first step is implemented
by a conformal predictor that outputs a sequence of p-values. The sequence is
generated in the on-line mode: examples are presented one by one and for each
new example a p-value is calculated from this and all the previous examples.
For the second step the authors introduced exchangeability martingales that are
functions of the p-values and track the deviation from the assumption. Once
the martingale grows up to a large value (20 and 100 are convenient rules of
thumb) the exchangeability assumption can be rejected for the data.

This paper proposes a new way of constructing martingales in the second step
of testing. To construct an exchangeability martingale based on the sequence
of p-values we need a betting function, which determines the contribution of
a p-value to the value of the martingale. In contrast to the previous studies
that use a fixed betting function the new martingale tunes its betting function
to the sequence to detect any deviation from the assumption. We show that
this martingale, which we call a plug-in martingale, is competitive with all the
martingales covered by the previous studies; namely, asymptotically the former
grows faster than the latter.

1.1 Related work

The first procedure of testing exchangeability on-line is described in Vovk et al.
(2003). The core testing mechanism is an exchangeability martingale. Ex-
changeability martingales are constructed using a sequence of p-values. The
algorithm for generating p-values assigns small p-values to unusual examples.
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It implies the idea of designing martingales that would have a large value if too
many small p-values were generated, and suggests corresponding power martin-
gales. Other martingales (simple mixture and sleepy jumper) implemented more
complicated strategies, but followed the same idea of scoring on small p-values.

Ho (2005) applied power martingales to the problem of change detection in
time-varying data streams. The author shows that small p-values inflate the
martingale values and suggests to use the martingale difference as another test
for the problem.

1.2 This paper

To the best of our knowledge, no study has aimed to find any other ways of
translating p-values into a martingale value. In this paper we propose a new
more flexible method of constructing martingales for the given sequence of p-
values.

The rest of the paper is organized as follows. Section 2 gives the definition
of exchangeability martingales. Section 3 presents the construction of plug-in
exchangeability martingales, explains the rationale behind them, and compares
them to the power martingales that have been used previously. Section 4 shows
experimental results of testing two real-life datasets for exchangeability; for
one of these datasets power martingales work satisfactorily and for the other
one the greater flexibility of plug-in martingales becomes essential. Section 5
summarises the work.

2 Exchangeability martingales

This section outlines necessary definitions and results of the previous studies.

2.1 Exchangeability

Consider a sequence of random variables
(
Z1, Z2, . . .) that all take values in the

same example space. Then the joint probability distribution P(Z1, . . . , ZN ) of a
finite number of the random variables is exchangeable if it is invariant under any
permutation of the random variables. The joint distribution of infinite number
of random variables

(
Z1, Z2, . . .) is exchangeable if the marginal distribution

P(Z1, . . . , ZN ) is exchangeable for every N .

2.2 Martingales for testing

As in Vovk et al. (2003), the main tool for testing exchangeability on-line is a
martingale. The value of the martingale reflects the strength of evidence against
the exchangeability assumption. An exchangeability martingale is a sequence of
non-negative random variables S0, S1, . . . that keep the conditional expectation:

Sn ≥ 0
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Sn = E(Sn+1 | S1, . . . , Sn),

where E refers to the expected value with respect to any exchangeable distri-
bution on examples. We also assume S0 = 1.

To understand the idea behind martingale testing we can imagine a game
where a player starts from the capital of 1, places bets on the outcomes of a
sequence of events, and never risks bankruptcy. Then a martingale corresponds
to a strategy of the player, and its value reflects the acquired capital. According
to Ville’s inequality (see Ville, 1939, p. 100),

P
{
∃n : Sn ≥ C

}
≤ 1/C, ∀C ≥ 1,

it is unlikely for any Sn to have a large value. For the problem of testing ex-
changeability, if the final value of a martingale is large then the exchangeability
assumption for the data can be rejected with the corresponding probability.

2.3 On-line calculation of p-values

Let (z1, z2, . . .) denote a sequence of examples. Each example zi is the vector
representing a set of attributes xi and a label yi: zi = (xi, yi). In the paper
we use conformal predictors to generate a sequence of p-values that corresponds
to the given examples. The general idea of conformal prediction is to test how
well a new example fits to the previously observed examples. For this purpose
a “nonconformity measure” is defined. This is a function that estimates the
strangeness of one example with respect to others:

αi = A
(
zi, {z1, . . . , zn}

)
,

where in general {. . .} stands for a multiset (the same element may be repeated
more than once) rather than a set. Typically, each example is assigned a “non-
conformity score” αi based on some prediction method. In this paper we deal
with the classification problem and the 1-Nearest Neighbor (1-NN) algorithm is
used as the underling method to compute the nonconformity scores. A natural
way to define the nonconformity score of an example is by comparing its dis-
tance to the examples with the same label to its distance to the examples with
a different label:

αi =
minj 6=i:yi=yj d(xi, xj)

minj 6=i:yi 6=yj d(xi, xj)
,

where d(xi, xj) is the Euclidean distance. The 1-NN is a simple algorithm but
it works well enough in many cases (see, e.g., Hastie et al., 2001, pp. 422–427).
According to the chosen nonconformity measure, αi is high if the example is
close to another example with a different label and far from any examples with
the same label.

Using the calculated nonconformity scores of all observed examples, the p-
value pn that corresponds to an example zn is calculated as

pn =
#{i : αi > αn}+ θn#{i : αi = αn}

n
,
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Algorithm 1 Generating p-values on-line

Input: (z1, z2, . . .) data for testing
Output: (p1, p2, . . .) sequence of p-values
for i = 1, 2, . . . do

observe a new example zi
for j = 1 to i do

αj = A
(
zj , {z1, . . . , zi}

)
end for
pi =

#{j:αj>αi}+θi#{j:αj=αi}
i

end for

where θn is a random number from [0, 1] and the symbol # means the cardinality
of a set. Algorithm 1 summarises the process of on-line calculation of p-values
(it is clear that it can also be applied to a finite dataset (z1, . . . , zn) producing
a finite sequence (p1, . . . , pn) of p-values).

The following is a standard result in the theory of conformal prediction (see,
e.g., Vovk et al. 2003, Theorem 1).

Theorem 1. If examples (z1, z2, . . .) (resp. (z1, z2, . . . , zn)) satisfy the ex-
changeability assumption, Algorithm 1 produces p-values (p1, p2, . . .) (resp.
(p1, p2, . . . , pn)) that are independent and uniformly distributed in [0, 1].

The property that the examples generated by an exchangeable distribution
provide uniformly and independently distributed p-values allows us to test ex-
changeability by calculating martingales as functions of the p-values.

3 Martingales based on p-values

This section focuses on the second part of testing: given the sequence of p-values
a martingale is calculated as a function of the p-values.

For each i ∈ {1, 2, . . .}, let fi : [0, 1]i → [0,∞). Let (p1, p2, . . .) be the
sequence of p-values generated by Algorithm 1. We consider martingales Sn of
the form

Sn =

n∏
i=1

fi(pi), n = 1, 2, . . . , (1)

where we denote fi(p) = fi(p1, . . . , pi−1, p) and call the function fi(p) a betting
function.

To be sure that (1) is indeed a martingale we need the following constraint
on the betting functions fi:∫ 1

0

fi(p)dp = 1, i = 1, 2, . . .

Then we can check:
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E(Sn+1 | S0, . . . , Sn) =

∫ 1

0

n∏
i=1

(
fi(pi)

)
fn+1(p)dp

=

n∏
i=1

(
fi(pi)

)∫ 1

0

fn+1(p)dp =

n∏
i=1

fi(pi) = Sn.

Using representation (1) we can update the martingale on-line: having cal-
culated a p-value pi for a new example in Algorithm 1 the current martingale
value becomes Si = Si−1 · fi(pi). To define the martingales completely we need
to describe the betting functions fi.

3.1 Previous results: power and simple mixture martin-
gales

Previous studies (Vovk et al., 2003) proposed to use a fixed betting function

∀i : fi(p) = εpε−1,

where ε ∈ [0, 1]. Several martingales were constructed using the function. The
power martingale for some ε, denoted as Mε

n, was defined as

Mε
n =

n∏
i=1

εpε−1i .

The simple mixture martingale, denoted as Mn, is the mixture of power mar-
tingales over different ε ∈ [0, 1]:

Mn =

∫ 1

0

Mε
ndε.

We note that such a martingale will grow only if there are many small p-
values in the sequence. It follows from the shape of the betting functions (see
Figure 1). If the generated p-values concentrate in any other part of the unit
interval, we cannot expect the martingale to grow. So it might be difficult to
reject the assumption of exchangeability for such sequences.

3.2 New plug-in approach

3.2.1 Plug-in martingale

Let us use an estimated probability density function as the betting function
fi(p). At each step the probability density function is estimated using the
accumulated p-values:

ρi(p) = ρ̂(p1, . . . , pi−1, p), (2)

where ρ̂(p1, . . . , pi−1, p) is the estimate of the probability density function using
the p-values p1, . . . , pi−1 output by Algorithm 1.

Substituting these betting functions into (1) we get a new martingale that
we call a plug-in martingale. The martingale avoids betting if the p-values are
distributed uniformly, but if there is any peak it will be used for betting.
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Figure 1: The betting functions that are used to construct the power and simple
mixture martingales. The functions provide growth of the martingales for small
p-values.

Estimating a probability density function. In our experiments we have
used the statistical environment and language R. The density function in its
Stats package implements kernel density estimation with different parameters.
But since p-values always lie in the unit interval, the standard methods of
kernel density estimation lead to poor results for the points that are near the
boundary. To get better results for the boundary points the sequence of p-
values is reflected to the left from zero and to the right from one. Then the
kernel density estimate is calculated using the bigger sequence

{
−pi, pi, 2− pi

}
,

i = 1, . . . , n. The estimated function is set to zero outside the unit interval and
then normalized to integrate to one. For the results presented in this paper the
parameters used are the Gaussian kernel and Silverman’s “rule of thumb” for
bandwidth selection. Other settings have been tried as well, but the results are
comparable and lead to the same conclusions.

The values Sn of the plug-in martingale can be updated recursively. Suppose
computing the nonconformity scores (α1, . . . , αn) from (z1, . . . , zn) takes time
g(n) and evaluating (2) takes time h(n). Then updating Sn−1 to Sn takes time
O(g(n) + n+ h(n)): indeed, it is easy to see that calculating the rank of αn in
the multiset {α1, . . . , αn} takes time Θ(n).
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The performance of the plug-in martingale on real-life datasets will be pre-
sented in Section 4. The rest of the current section proves that the plug-in
martingale provides asymptotically a better growth rate than any martingale
with a fixed betting function. To prove this asymptotical property of the plug-in
martingale we need the following assumptions.

3.2.2 Assumptions

Consider an infinite sequence of p-values (p1, p2, . . .). (This is simply a deter-
ministic sequence.) For its finite prefix (p1, . . . , pn) define the corresponding
empirical probability measure Pn: for a Borel set A in R,

Pn(A) =
#{i = 1, . . . , n : pi ∈ A}

n
.

We say that the sequence (p1, p2, . . .) is stable if there exists a probability mea-
sure P on R such that:

1. Pn
weak−−−−→
n→∞

P;

2. there exists a positive continuous density function ρ(p) for P: for any
Borel set A in R, P(A) =

∫
A
ρ(p)dp.

Intuitively, the stability means that asymptotically the sequence of p-values can
be described well by a probability distribution.

Consider a sequence (f1(p), f2(p), . . .) of betting functions. (This is simply a
deterministic sequence of functions fi : [0, 1] → [0,∞), although we are partic-
ularly interested in the functions fi(p) = ρi(p), as defined in (2).) We say that
this sequence is consistent if

log
(
fn(p)

) uniformly in p−−−−−−−−−−−→
n→∞

log
(
ρ(p)).

Intuitively, consistency is an assumption about the algorithm that we use to
estimate the function ρ(p); in the limit we want a good approximation.

3.2.3 Growth rate of plug-in martingale

The following result says that, under our assumptions, the logarithmic growth
rate of the plug-in martingale is better than that of any martingale with a fixed
betting function (remember that by a betting function we mean any function
mapping [0, 1] to [0,∞)).

Theorem 2. If a sequence (p1, p2, . . .) ∈ [0, 1]∞ is stable and a sequence of
betting functions

(
f1(p), f2(p), . . .

)
is consistent then, for any positive continuous

betting function f ,

lim inf
n→∞

(
1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

))
≥ 0
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First we explain the meaning of Theorem 2 and then prove it. According to
representation (1) after n steps the martingale grows to

n∏
i=1

fi(pi). (3)

Note that if for any p-value p ∈ [0, 1] we have fi(p) = 0 then the martingale
can become zero and will never change after that. Therefore, it is reasonable
to consider positive fi(p). Then we can rewrite product (3) as the sum of
logarithms, which gives us the logarithmic growth of the martingale:

n∑
i=1

log
(
fi(pi)

)
.

We assume that the sequence of p-values is stable and the sequence of estimated
probability density functions that is used to construct the plug-in martingale is
consistent. Then the limit inequality from Theorem 2 states that the logarithmic
growth rate of the plug-in martingale is asymptotically at least as high as that of
any martingale with a fixed betting function (which were suggested in previous
studies).

To prove Theorem 2 we will use the following lemma.

Lemma 1. For any probability density functions ρ and f (so that
∫ 1

0
ρ(p)dp = 1

and
∫ 1

0
f(p)dp = 1),∫ 1

0

log
(
ρ(p)

)
ρ(p)dp ≥

∫ 1

0

log
(
f(p)

)
ρ(p)dp.

Proof of Lemma 1. It is well known (Kullback, 1959, p. 14) that the Kullback–
Leibler divergence is always non-negative:∫ 1

0

log
( ρ(p)

f(p)

)
ρ(p)dp ≥ 0.

This is equivalent to the inequality asserted by Lemma 1.

Proof of Theorem 2. Suppose that, contrary to the statement of Theorem 2,
there exists δ > 0 such that

lim inf
n→∞

(
1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

))
< −δ. (4)

Then choose an ε satisfying 0 < ε < δ/4.
Substituting the definition of ρ(p) into Lemma 1 we obtain∫ 1

0

log
(
ρ(p)

)
dP ≥

∫ 1

0

log
(
f(p)

)
dP. (5)
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From the stability of (p1, p2, . . .) it follows that there exists a numberN1 = N1(ε)
such that, for all n > N1,∣∣∣∣∫ 1

0

log
(
f(p)

)
dPn −

∫ 1

0

log
(
f(p)

)
dP

∣∣∣∣ < ε

and ∣∣∣∣∫ 1

0

log
(
ρ(p)

)
dPn −

∫ 1

0

log
(
ρ(p)

)
dP

∣∣∣∣ < ε.

Then inequality (5) implies that, for all n ≥ N1,∫ 1

0

log
(
ρ(p)

)
dPn ≥

∫ 1

0

log
(
f(p)

)
dPn − 2ε.

By the definition of the probability measure Pn, the last inequality is the same
thing as

1

n

n∑
i=1

log
(
ρ(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 2ε. (6)

By the consistency of
(
f1(p), f2(p), . . .

)
there exists a number N2 = N2(ε) such

that, for all i > N2 and all p ∈ [0, 1],∣∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣∣ < ε. (7)

Let us define the number

M = max
i,p

∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣. (8)

From (7) and (8) we have∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣ ≤ { M, i ≤ N2

ε, i > N2.
(9)

Denote N3 = max(N1, N2). Then, using (9) and (6), we obtain, for all
n > N3,

1

n

n∑
i=1

log
(
fi(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 3ε− MN3

n
.

Denoting N4 = max(N3,
MN3

ε ), we can rewrite the last inequality as

1

n

n∑
i=1

log
(
fi(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 4ε,

for all n > N4. Finally, recalling that ε < δ
4 , we have, for all n > N4,

1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

)
≥ −δ.

This contradicts (4) and therefore completes the proof of Theorem 2.
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Figure 2: The growth of the simple mixture martingale and the plug-in mar-
tingale for the USPS dataset randomly shuffled before on-line testing. The
exchangeability assumption is satisfied: the final values of the martingales are
about 0.011.

4 Empirical results

In this section we investigate the performance of our plug-in martingale and
compare it with that of the simple mixture martingale. Two real-life datasets
have been tested for the exchangeability: the USPS dataset and the Statlog
Satellite dataset.

4.1 USPS dataset

Data The US Postal Service (USPS) dataset consists of 7291 training exam-
ples and 2007 test examples of handwritten digits, from 0 to 9. The data were
collected from real-life zip codes. Each example is described by the 256 at-
tributes representing the pixels for displaying a digit on the 16× 16 gray-scaled
image and its label. It is well known that the examples in this dataset are not
perfectly exchangeable (Vovk et al., 2003), and any reasonable test should reject
exchangeability there. In our experiments we merge the training and test sets
and perform testing for the full dataset of 9298 examples.
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Figure 3: The growth of the simple mixture martingale and the plug-in martin-
gale for the Statlog Satellite dataset randomly shuffled before on-line testing.
The exchangeability assumption is satisfied: the final values of the martingales
are about 0.01.

Figure 2 shows the typical performance of the martingales when the ex-
changeability assumption is satisfied for sure: all examples were randomly shuf-
fled before the testing.

Figure 4 shows the performance of the martingales when the examples arrive
in the original order: first 7291 of the training set and then 2007 of the test set.
The p-values are generated on-line by Algorithm 1 and the two martingales are
calculated from the same sequence of p-values. The final value for the simple
mixture martingale is 2.0× 1010, and the final value for the plug-in martingale
is 3.9× 108.

Figure 6 shows the betting functions that correspond to the plug-in martin-
gale and the “best” power martingale. For the plug-in martingale, the function
is the estimated probability density function calculated using the whole sequence
of p-values. The betting function for the family of power martingale corresponds
to the parameter ε∗ that provides the largest final value among all power mar-
tingales. It gives a clue why we could not see advantages of the new approach
for this dataset: both martingales grew up to approximately the same level.
There is not much difference between the best betting functions for the old and
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Figure 4: The growth of the simple mixture martingale and the plug-in mar-
tingale for the full USPS dataset. For the examples in the original order the
exchangeability assumption is rejected: the final values of the martingales are
grater then 3.8× 108.

new methods, and the new method suffers because of its greater flexibility.

4.2 Statlog Satellite dataset

Data The Satellite dataset (Frank & Asuncion, 2010) consists of 6435 satellite
images (divided into 4435 training examples and 2000 test examples). The
examples are 3 × 3 pixels sub-areas of the satellite picture, where each pixel
is described by four spectral values in different spectral bands. Each example
is represented by 36 attributes and a label indicating the classification of the
central pixel. Labels are numbers from 1 to 7, excluding 6. The testing results
are described bellow.

Figure 3 shows the performance of the martingales for randomly shuffled
examples of the dataset. As expected, the martingales do not reject the ex-
changeability assumption there.

Figure 5 presents the performance of the martingales when the examples
arrive in the original order. The final value for the simple mixture martingale is
5.6× 102 and the final value for the plug-in martingale is 1.8× 1017. Again, the
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Figure 5: The growth of the simple mixture martingale and the plug-in mar-
tingale for the Statlog Satellite dataset. For the examples in the original order
the exchangeability assumption is rejected: the final value of the simple mixture
martingale is 5.6×102, and the final value of the plug-in martingale is 1.8×1017.

corresponding betting functions for the plug-in martingale and the “best” power
martingale are presented in Figure 7. For the dataset the generated p-values
have a tricky distribution. The family of power betting functions εpε−1 cannot
provide a good approximation. The power martingales lose on p-values close
to the second peak of the p-values distribution. But the plug-in martingale is
more flexible and ends up with a much higher final value.

It can be argued that both methods, old and new, work for the Satellite
dataset in the sense of rejecting the exchangeability assumption at any of the
commonly used thresholds (such as 20 or 100). However, the situation would
have been different had the dataset consisted of only the first 1000 examples:
the final value of the simple mixture martingale would have been 0.013 whereas
the final value of the plug-in martingale would have been 3.74× 1015.

5 Discussion and conclusions

In this paper we have introduced a new way of constructing martingales for
testing exchangeability on-line. We have shown that for stable sequences of
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Figure 6: The “best” betting functions for testing the USPS dataset, the exam-
ples arriving in the original order. The best power function ε∗pε

∗−1 is chosen
according to the maximal final value of the power martingales. The betting
function for the plug-in martingale is the estimated pdf.

p-values the new more adaptive martingale provides asymptotically the best
result compared with any other martingale with a fixed betting function. The
experiments of testing two real-life datasets have been presented. Using the same
sequence of p-values the plug-in martingale extracts approximately the same or
more information about the data-generating distribution than the previously
introduced power martingales.

Our goal has been to find an exchangeability martingale that does not need
any assumptions about the p-values generated by the method of conformal pre-
diction. Our proposed martingale adapts to the unknown distribution of the
p-values by estimating a good betting function from the past data. This is
an example of the plug-in approach. It is generally believed that the Bayesian
approach is more efficient than the plug-in approach (see, e.g., Bernardo &
Smith, 2000, p. 483). In our present context, the Bayesian approach would in-
volve choosing a prior distribution on the betting functions and integrating the
exchangeability martingales corresponding to these betting functions over the
prior distribution. It is not clear yet whether this can be done efficiently and, if
yes, whether this can improve the performance of exchangeability martingales.
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Figure 7: The “best” betting functions for testing the Statlog Satellite dataset,
the examples arriving in the original order. The best power function ε∗pε

∗−1

is chosen according to the maximal final value of the power martingales. The
betting function for the plug-in martingale is the estimated pdf.
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