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Abstract

This paper continues study, both theoretical and empirical, of the method of
Venn prediction, concentrating on binary prediction problems. Venn predic-
tors produce probability-type predictions for the labels of test objects which
are guaranteed to be well calibrated under the standard assumption that the
observations are generated independently from the same distribution. We give a
simple formalization and proof of this property. We also introduce Venn–Abers
predictors, a new class of Venn predictors based on the idea of isotonic regres-
sion, and report promising empirical results both for Venn–Abers predictors and
for their more computationally efficient simplified version.
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1 Introduction

Venn predictors were introduced in [16] and are discussed in detail in [15],
Chapter 6, but to make the paper self-contained we define them in Section 2.
This section also states the important property of validity of Venn predictors:
they are automatically well calibrated. In some form this property of validity
has been known: see, e.g., [15], Theorem 6.6. However, this known version is
complicated, whereas our version (Theorem 1 below) is much simpler and the in-
tuition behind it is more transparent. In the same section we show (Theorem 2)
that Venn prediction is essentially the only way to achieve our new property of
validity.

Section 3 defines a natural class of Venn predictors, which we call Venn–
Abers predictors (with the “Abers” part formed by the initial letters of the
authors’ surnames in the paper [1] introducing the underlying technique). Venn–
Abers predictors are defined on top of a wide class of classification algorithms,
which we call “scoring classifiers” in this paper; each scoring classifier can be
automatically transformed into a Venn–Abers predictor, and we refer to this
transformation as the “Venn–Abers method”. Because of its theoretical guar-
antees, this method can be used for improving the calibration of probabilistic
predictions.

The definition of Venn–Abers predictors was prompted by [8], which demon-
strated that the method of calibrating probabilistic predictions introduced by
Zadrozny and Elkan in [17] (an adaptation of the isotonic regression procedure
of [1]) does not always achieve its goal and sometimes leads to poorly calibrated
predictions. Another paper reporting the possibility for the Zadrozny–Elkan
method to produce grossly miscalibrated predictions is [7]. The Venn–Abers
method is a simple modification of Zadrozny and Elkan’s method; being a spe-
cial case of Venn prediction, it overcomes the problem of potentially poor cali-
bration.

Theorem 1 in Section 2 says that Venn predictors are perfectly calibrated.
The price to pay, however, is that Venn predictors are multiprobabilistic predic-
tors, in the sense of issuing a set of probabilistic predictions instead of a single
probabilistic prediction; intuitively, the diameter of this set reflects the uncer-
tainty of our prediction. In Section 5 we explore the efficiency of Venn–Abers
predictors empirically using the fundamental log loss function and another pop-
ular loss function, square loss. To apply these loss functions, we need, however,
probabilistic predictions rather than multiprobabilistic predictions, and in Sec-
tion 4 we define natural minimax ways of replacing the latter with the former.

In Section 5 we explore the empirical predictive performance of the most nat-
ural version of the original Zadrozny–Elkan method, the Venn–Abers method,
and the latter’s simplified version, which is not only simpler but also more effi-
cient computationally. We use nine benchmark data sets from the UCI reposi-
tory [5] and six standard scoring classifiers, and for each combination of a data
set and classifier evaluate the predictive performance of each method. Our re-
sults show that the Venn–Abers and simplified Venn–Abers methods usually
improve the performance of the underlying classifiers, and in our experiments
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they work better than the original Zadrozny–Elkan method.
Interestingly, the predictive performance of the simplified Venn–Abers

method is slightly better than that of the Venn–Abers method on the chosen
data sets and scoring classifiers; e.g., in the case of the log loss function, the
simplified Venn–Abers method improves on a baseline method for seven data
sets out of the nine, whereas the Venn–Abers method achieves this for only
six data sets. If these results are confirmed in wider empirical studies, the
simplified Venn–Abers method is preferred since it achieves both computational
and predictive efficiency.

Our empirical study in Section 5 does not mean that we recommend that the
multiprobabilistic predictions output by Venn–Abers (and more generally Venn)
predictors be replaced by probabilistic predictions (e.g., using the formulas of
Section 4). On the contrary, we believe that the size of a multiprobabilistic
prediction carries valuable information about the uncertainty of the prediction.
The only purpose of replacing multiprobabilistic by probabilistic predictions is
to facilitate comparison of various prediction algorithms using well-established
loss functions.

2 Venn predictors

We consider observations z = (x, y) consisting of two components: an object
x ∈ X and its label y ∈ Y. In this paper we are only interested in the binary
case and for concreteness set Y := {0, 1}. We assume that X is a measurable
space, so that observations are elements of the measurable space that is the
Cartesian product Z := X×Y = X× {0, 1}.

A Venn taxonomy A is a measurable function that assigns to each n ∈
{2, 3, . . .} and each sequence (z1, . . . , zn) ∈ Zn an equivalence relation ∼ on
{1, . . . , n} which is equivariant in the sense that, for each n and each permutation
π of {1, . . . , n},

(i ∼ j | z1, . . . , zn) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n)),

where the notation (i ∼ j | z1, . . . , zn) means that i is equivalent to j under the
relation assigned by A to (z1, . . . , zn). (Intuitively, (i ∼ j | z1, . . . , zn) means
that zi and zj have sufficiently similar objects xi and xj , so that yi can be used
when predicting yj and vice versa.) The measurability of A means that for all
n, i, and j the set {(z1, . . . , zn) |(i ∼ j | z1, . . . , zn)} is measurable. Define

A(j | z1, . . . , zn) := {i ∈ {1, . . . , n} | (i ∼ j | z1, . . . , zn)}

to be the equivalence class of j. Let (z1, . . . , zl) be a training sequence of
observations zi = (xi, yi), i = 1, . . . , l, and x be a test object. The Venn
predictor associated with a given Venn taxonomy A outputs the pair (p0, p1) as
its prediction for x’s label, where

py :=
|{i ∈ A(l + 1 | z1, . . . , zl, (x, y)) | yi = 1}|

|A(l + 1 | z1, . . . , zl, (x, y))|
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for both y ∈ {0, 1} (notice that the denominator is always positive). Intuitively,
p0 and p1 are the predicted probabilities that the label of x is 1; of course,
the prediction is useful only when p0 ≈ p1. The probability interval output
by a Venn predictor is defined to be the convex hull conv(p0, p1) of the set
{p0, p1}; we will sometimes refer to the pair (p0, p1) or the set {p0, p1} as the
multiprobabilistic prediction.

Validity of Venn predictors

Let us say that a random variable P taking values in [0, 1] is perfectly calibrated
for a random variable Y taking values in {0, 1} if

E(Y | P ) = P a.s. (1)

Intuitively, P is the prediction made by a probabilistic predictor for Y , and
perfect calibration means that the probabilistic predictor gets the probabilities
right, at least on average, for each value of the prediction. A probabilistic
predictor for Y whose prediction P satisfies (1) with an approximate equality is
said to be well calibrated [4], or unbiased in the small [11, 4]; this terminology
will be used only in informal discussions, of course.

A selector is a random variable taking values 0 or 1.

Theorem 1. Let (X1, Y1), (X2, Y2), . . . , (X,Y ) be IID (independent identically
distributed) random observations. Fix a Venn predictor V and an l ∈ {1, 2, . . .}.
Let (P0, P1) be the output of V given (X1, Y1, . . . , Xl, Yl) as the training set and
X as the test object. There exists a selector S such that PS is perfectly calibrated
for Y .

Intuitively, at least one of the two probabilities output by the Venn predictor
is perfectly calibrated. Therefore, if the two probabilities tend to be close to
each other, we expect them (or, say, their average) to be well calibrated.

In the proof of Theorem 1 and later in the paper we will use the nota-
tion *a1, . . . , an+ for bags (in other words, multisets); the cardinality of the set
{a1, . . . , an} might well be smaller than n (because of the removal of all du-
plicates in the bag). Intuitively, *a1, . . . , an+ is the sequence (a1, . . . , an) with
its ordering forgotten. We will sometimes refer to the bag *z1, . . . , zl+, where
(z1, . . . , zl) is the training sequence, as the training set (although technically it
is a multiset rather than a set).

Proof of Theorem 1. Take S := Y as the selector. Let us check that (1) is true
even if we further condition on the observed bag *(X1, Y1), . . . , (Xl, Yl), (X,Y )+
(so that the remaining randomness consists in generating a random permutation
of this bag). We only need to check the equality E(Y | P = p) = p, where P is
the average of 1s in the equivalence class containing (X,Y ), for the ps which are
the percentages of 1s in various equivalence classes (further conditioning on the
observed bag is not reflected in our notation). For each such p, E(Y | P = p)
is the average of 1s in the equivalence classes for which the average of 1s is p;
therefore, we indeed have E(Y | P = p) = p.
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The following simple corollary of Theorem 1 gives a weaker property of
validity, which is sometimes called “unbiasedness in the large” [11, 4].

Corollary 1. For any Venn predictor V and any l = 1, 2, . . .,

P(Y = 1) ∈
[
E (V (X;X1, Y1, . . . , Xl, Yl)) ,E

(
V (X;X1, Y1, . . . , Xl, Yl)

)]
, (2)

where (X1, Y1), . . . , (Xl, Yl), (X,Y ) are IID observations and [V (. . .), V (. . .)] is
the probability interval produced by V for the test object X based on the training
sequence (X1, Y1, . . . , Xl, Yl).

Proof. It suffices to notice that, for a selector S such that P = PS ((P0, P1)
being the output of V ) satisfies the condition of perfect calibration (1),

P(Y = 1) = E(Y ) = E(E(Y | PS)) = E(PS) ∈
[
EV ,EV

]
,

where the arguments of V and V are omitted.

Unbiasedness in the large (2) is easy to achieve even for probabilistic pre-
dictors if we do not care about other measures of quality of our predictions: for
example, the probabilistic predictor ignoring the xs and outputting k/l as its
prediction, where k is the number of labels 1 in the training sequence of size l,
is unbiased in the large. Unbiasedness in the small (1) is also easy to achieve if
we allow multiprobabilistic predictors: consider the multiprobabilistic predictor
ignoring the xs and outputting {k/(l + 1), (k + 1)/(l + 1)} as its prediction.
The problem is how to achieve predictive efficiency (making our prediction as
relevant to the test object as possible without overfitting) while maintaining
validity.

Our following result, Theorem 2, will say that under mild regularity con-
ditions unbiasedness in the small (1) holds only for Venn predictors (perhaps
weakened by adding irrelevant probabilistic predictions) and, therefore, implies
all other properties of validity, such as the more complicated one given in [15,
Chapter 6].

To state Theorem 2 we need a few further definitions. Let us fix the length
l of the training sequence for now. A multiprobabilistic predictor is a function
that maps each sequence (z1, . . . , zl) ∈ Zl to a subset of [0, 1] (not required
to be measurable in any sense). Venn predictors are an important example
for this paper. Let us say that a multiprobabilistic predictor is invariant if
it is independent of the ordering of the training set (z1, . . . , zl). An invariant
selector for an invariant multiprobabilistic predictor F is a measurable function
f : Zl+1 → [0, 1] such that f(z1, . . . , zl+1) does not change when z1, . . . , zl are
permuted and such that f(z1, . . . , zl+1) ∈ F (z1, . . . , zl) for all (z1, . . . , zl+1).
(It is natural to consider only invariant predictors and selectors under the IID
assumption because of the principle of sufficiency [3, Chap. 2].) We say that
an invariant multiprobabilistic predictor F is invariantly perfectly calibrated if
it has an invariant selector f such that

E
(
Y | f(Z1, . . . , Zl, (X,Y ))

)
= f(Z1, . . . , Zl, (X,Y )) a.s. (3)

whenever Z1, . . . , Zl, (X,Y ) are IID observations.
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Theorem 2. If an invariant multiprobabilistic predictor F is invariantly per-
fectly calibrated, then it contains a Venn predictor V in the sense that both ele-
ments of V (Z1, . . . , Zl) belong to F (Z1, . . . , Zl) almost surely provided Z1, . . . , Zl
are IID.

Proof. Let f be an invariant selector of F satisfying the condition (3) of being
invariantly perfectly calibrated. By definition,

E
(
Y − f(Z1, . . . , Zl, (X,Y )) | f(Z1, . . . , Zl, (X,Y ))

)
= 0 a.s.,

which implies

E
(
(Y − f(Z1, . . . , Zl, (X,Y )))1{f(Z1,...,Zl,(X,Y ))∈[a,b]}

)
= 0 a.s. (4)

for all intervals [a, b] with rational end-points. The expected value in (4) can be
obtained in two steps: first we average

(y′l+1 − f(z′1, . . . , z
′
l+1))1{f(z′1,...,z′l+1)∈[a,b]}

over the orderings (z′1, . . . , z
′
l+1) of each bag *z1, . . . , zl+1+, where zi = (xi, yi)

and z′i = (x′i, y
′
i), and then we average over the bags *z1, . . . , zl+1+ generated

according to zi := Zi, i = 1, . . . , l, and zl+1 := (X,Y ). The first operation
is discrete: the average over the orderings of *z1, . . . , zl+1+ is the arithmetic
mean of (yi − pi)1{pi∈[a,b]} over i = 1, . . . , l + 1, where pi := f(. . . , zi) and the
dots stand for z1, . . . , zi−1 and zi+1, . . . , zl+1 arranged in any order (since f is
invariant, the order does not matter). By the completeness of the statistic that
maps a data sequence of size l + 1 to the corresponding bag [10, Section 4.3],
this average is zero for all [a, b] and almost all bags. Without loss of generality
we assume that this holds for all bags.

Define a Venn taxonomy A as follows: given a sequence (z1, . . . , zl+1), set
i ∼ j if pi = pj where p is defined as above. It is easy to check that the
corresponding Venn predictor satisfies the requirement in Theorem 2.

Remark. The invariance assumption in Theorem 2 is essential. Indeed, suppose
l > 1 and consider the multiprobabilistic predictor whose prediction for the label
of the test observation does not depend on the objects and is{

{k/l, (k + 1)/l} if y1 = 0

{(k − 1)/l, k/l} if y1 = 1,

where k is the number of 1s among the labels of the l training observations.
This non-invariant predictor is perfectly calibrated (see below) but does not
contain a Venn predictor (if it did, such a Venn predictor, being invariant,
would always output the one-element multiprobabilistic prediction {k/l}, which
is impossible). Let us check that this non-invariant predictor is indeed perfectly
calibrated, even given the union of the training set and the test observation (i.e.,
given the bag of size l + 1 obtained from the training sequence by joining the
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test observation and then forgetting the ordering). Take the selector such that
the selected probabilistic predictor is

k/l for sequences of the form 0 . . . 0

(k + 1)/l for sequences of the form 0 . . . 1

(k − 1)/l for sequences of the form 1 . . . 0

k/l for sequences of the form 1 . . . 1.

For a binary sequence of labels of length l + 1 with m 1s the probabilistic
prediction P for its last element will be, therefore,

m/l for sequences of the form 0 . . . 0

m/l for sequences of the form 0 . . . 1

(m− 1)/l for sequences of the form 1 . . . 0

(m− 1)/l for sequences of the form 1 . . . 1.

The conditional probability that Y = 1 (Y being the label of the last element)
given P = p (and given m) is (

l−1
m−1

)(
l
m

) =
m

l

when p = m/l and is (
l−1
m−2

)(
l

m−1
) =

m− 1

l

when p = (m− 1)/l; in both cases we have perfect calibration.

3 Venn–Abers predictors

We say that a function f is increasing if its domain is an ordered set and
t1 ≤ t2 ⇒ f(t1) ≤ f(t2).

Many machine-learning algorithms for classification are in fact scoring clas-
sifiers: when trained on a training sequence of observations and fed with a test
object x, they output a prediction score s(x); we will call s : X → R the scor-
ing function for that training sequence. The actual classification algorithm is
obtained by fixing a threshold c and predicting the label of x to be 1 if and
only if s(x) ≥ c (or if and only if s(x) > c). Alternatively, one could apply an
increasing function g to s(x) in an attempt to “calibrate” the scores, so that
g(s(x)) can be used as the predicted probability that the label of x is 1.

Fix a scoring classifier and let (z1, . . . , zl) be a training sequence of observa-
tions zi = (xi, yi), i = 1, . . . , l. The most direct application [17] of the method
of isotonic regression [1] to the problem of score calibration is as follows. Train
the scoring classifier on the training sequence and compute the score s(xi) for
each training observation (xi, yi), where s is the scoring function for (z1, . . . , zl).
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Algorithm 1 Venn–Abers predictor

Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)
for y ∈ {0, 1} do

set sy to the scoring function for (z1, . . . , zl, (x, y))
set gy to the isotonic calibrator for

(sy(x1), y1), . . . , (sy(xl), yl), (sy(x), y)
set py := gy(sy(x))

end for

Let g be the increasing function on the set {s(x1), . . . , s(xl)} that maximizes
the likelihood

l∏
i=1

pi, where pi :=

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0.
(5)

Such a function g is indeed unique [1, Corollary 2.1] and can be easily found
using the “pair-adjacent violators algorithm” (PAVA, described in detail in the
summary of [1] and in [2, Section 1.2]; see also the proof of Lemma 1 below).
We will say that g is the isotonic calibrator for ((s(x1), y1), . . . , (s(xl), yl)). To
predict the label of a test object x, the direct method finds the closest s(xi) to
s(x) and outputs g(s(xi)) as its prediction (in the case of ties our implementation
of this method used in Section 5 chooses the smaller s(xi); however, ties almost
never happen in our experiments). We will refer to this as the direct isotonic-
regression (DIR) method.

The direct method is prone to overfitting as the same observations z1, . . . , zl
are used both for training the scoring classifier and for calibration without taking
any precautions. The Venn–Abers predictor corresponding to the given scoring
classifier is the multiprobabilistic predictor that is defined as follows. Try the
two different labels, 0 and 1, for the test object x. Let s0 be the scoring function
for (z1, . . . , zl, (x, 0)), s1 be the scoring function for (z1, . . . , zl, (x, 1)), g0 be the
isotonic calibrator for(

(s0(x1), y1), . . . , (s0(xl), yl), (s0(x), 0)
)
, (6)

and g1 be the isotonic calibrator for(
(s1(x1), y1), . . . , (s1(xl), yl), (s1(x), 1)

)
. (7)

The multiprobabilistic prediction output by the Venn–Abers predictor is
(p0, p1), where p0 := g0(s0(x)) and p1 := g1(s1(x)). (And we can expect p0
and p1 to be close to each other unless DIR overfits grossly.) The Venn–Abers
predictor is described as Algorithm 1.

The intuition behind Algorithm 1 is that it tries to evaluate the robustness of
the DIR prediction. To see how sensitive the scoring function is to the training
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set we extend the latter by adding the test object labelled in two different ways.
And to see how sensitive the probabilistic prediction is, we again consider the
training set extended in two different ways (if it is sensitive, the prediction
will be fragile even if the scoring function is robust). For large data sets and
inflexible scoring functions, we will have p0 ≈ p1, and both numbers will be
close to the DIR prediction. However, even if the data set is very large but the
scoring function is very flexible, p0 can be far from p1 (the extreme case is where
the scoring function is so flexible that it ignores all observations apart from a
few that are most similar to the test object, and in this case it does not matter
how big the data set is). We rarely know in advance how flexible our scoring
function is relative to the size of the data set, and the difference between p0 and
p1 gives us some indication of this.

The following proposition says that Venn–Abers predictors are Venn pre-
dictors and, therefore, inherit all properties of validity of the latter, such as
Theorem 1.

Proposition 1. Venn–Abers predictors are Venn predictors.

Proof. Fix a Venn–Abers predictor. The corresponding Venn taxonomy is de-
fined as follows: given a sequence

(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)) ∈ (X× {0, 1})n

and i, j ∈ {1, . . . , n}, we set i ∼ j if and only if g(s(xi)) = g(s(xj)), where s is
the scoring function for (z1, . . . , zn) and g is the isotonic calibrator for(

(s(x1), y1), . . . , (s(xn), yn)
)
.

Lemma 1 below shows that the Venn predictor corresponding to this taxonomy
gives predictions identical to those given by the original Venn–Abers predictor.
This proves the proposition.

Lemma 1. Let g be the isotonic calibrator for ((t1, y1), . . . , (tn, yn)), where
ti ∈ R and yi ∈ {0, 1}, i = 1, . . . , n. Any p ∈ {g(t1), . . . , g(tn)} is equal to the
arithmetic mean of the labels yi of the ti, i = 1, . . . , n, satisfying g(ti) = p.

Proof. The statement of the lemma immediately follows from the definition of
the PAVA [1, summary], which we will reproduce here. Arrange the numbers
ti in the strictly increasing order t(1) < · · · < t(k), where k ≤ n is the number
of distinct elements among ti. We would like to find the increasing function g
on the set {t(1), . . . , t(k)} = {t1, . . . , tn} maximizing the likelihood (defined by
(5) with ti in place of s(xi) and n in place of l). The procedure is recursive.
At each step the set {t(1), . . . , t(k)} is partitioned into a number of disjoint cells
consisting of adjacent elements of the set; to each cell is assigned a ratio a/N
(formally, a pair of integers, with a ≥ 0 and N > 0); the function g defined at
this step (perhaps to be redefined at the following steps) is constant on each
cell. For j = 1, . . . , k, let a(j) be the number of i such that yi = 1 and ti = t(j),
and let N(j) be the number of i such that ti = t(j). Start from the partition
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of {t(1), . . . , t(k)} into one-element cells, assign the ratio a(j)/N(j) to {t(j)}, and
set

g(t(j)) :=
a(j)

N(j)
(8)

(in the notation used in this proof, a/N is a pair of integers whereas a
N is a

rational number, the result of the division). If the function g is increasing, we
are done. If not, there is a pair C1, C2 of adjacent cells (“violators”) such that
C1 is to the left of C2 and g(C1) > g(C2) (where g(C) stands for the common
value of g(t(j)) for t(j) ∈ C); in this case redefine the partition by merging C1

and C2 into one cell C, assigning the ratio (a1 + a2)/(N1 + N2) to C, where
a1/N1 and a2/N2 are the ratios assigned to C1 and C2, respectively, and setting

g(t(j)) :=
N1

N1 +N2
g(C1) +

N2

N1 +N2
g(C2) =

a1 + a2
N1 +N2

(9)

for all t(j) ∈ C. Repeat the process until g becomes increasing (the number
of cells decreases by 1 at each iteration, so the process will terminate in at
most k steps). The final function g is the one that maximizes the likelihood.
The statement of the lemma follows from this recursive definition: it is true by
definition for the initial function (8) and remains true when g is redefined by
(9).

4 Probabilistic predictors derived from Venn
predictors

In the next section we will compare Venn–Abers predictors with known prob-
abilistic predictors using standard loss functions. Since Venn–Abers predictors
output pairs of probabilities rather than point probabilities, we will need to fit
them (somewhat artificially) in the standard framework extracting one proba-
bility p from p0 and p1.

In this paper we will use two loss functions, log loss and square loss. The
log loss suffered when predicting p ∈ [0, 1] whereas the true label is y is

λln(p, y) :=

{
− ln(1− p) if y = 0

− ln p if y = 1.

This is the most fundamental loss function, since the cumulative loss∑n
i=1 λln(pi, yi) over a test sequence of size n is equal to the minus log of

the probability that the predictor assigns to the sequence (this assumes either
the batch mode of prediction with independent test observations or the online
mode of prediction); therefore, a smaller cumulative log loss corresponds to a
larger probability. The square loss suffered when predicting p ∈ [0, 1] for the
true label y is

λsq(p, y) := (y − p)2.
The main advantage of this loss function is that it is proper (see, e.g., [4]): the
function Ey∼Bp

λsq(q, y) of q ∈ [0, 1], where Bp is the Bernoulli distribution with
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parameter p, attains its minimum at q = p. (Of course, the log loss function is
also proper.)

First suppose that our loss function is λln and we are given a multiproba-
bilistic prediction (p0, p1); let us find the corresponding minimax probabilistic
prediction p. If the true outcome is y = 0, our regret for using p instead of the
appropriate p0 is − ln(1−p)+ ln(1−p0). If y = 1, our regret for using p instead
of the appropriate p1 is − ln p+ ln p1. The first regret as a function of p ∈ [0, 1]
strictly increases from a nonpositive value to ∞ as p changes from 0 to 1. The
second regret as a function of p strictly decreases from∞ to a nonpositive value
as p changes from 0 to 1. Therefore, the minimax regret is the solution to

− ln(1− p) + ln(1− p0) = − ln p+ ln p1,

which is
p =

p1
1− p0 + p1

. (10)

The intuition behind this minimax value of p is that we can interpret the multi-
probabilistic prediction (p0, p1) as the unnormalized probability distribution P
on {0, 1} such that P ({0}) = 1− p0 and P ({1}) = p1; we then normalize P to
get a genuine probability distribution P ′ := P/P ({0, 1}), and the p in (10) is
equal to P ′({1}). Of course, it is always true that p ∈ conv(p0, p1).

In the case of the square loss function, the regret is{
p2 − p20 if y = 0

(1− p)2 − (1− p1)2 if y = 1

and the two regrets are equal when

p := p1 + p20/2− p21/2. (11)

To see how natural this expression is notice that (11) is equivalent to

p = p̄+ (p1 − p0)

(
1

2
− p̄
)
,

where p̄ := (p0 + p1)/2. Therefore, p is a regularized version of p̄: we move p̄
towards the neutral value 1/2 in the typical (for the Venn–Abers method) case
where p0 < p1. In any case, we always have p ∈ conv(p0, p1).

The following lemma shows that log loss is never infinite for probabilistic
predictors derived from Venn predictors.

Lemma 2. Neither of the methods discussed in this section (see (10) and (11))
ever produces p ∈ {0, 1} when applied to Venn–Abers predictors.

Proof. Lemma 1 implies that p0 < 1 and that p1 > 0. It remains to notice
that both (10) and (11) produce p in the interior of conv(p0, p1) if p0 6= p1 and
produce p = p0 = p1 if p0 = p1 (and this is true for any sensible averaging
method).
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Table 1: Log loss (MLE) results obtained using standard Weka classifiers (W)
and the three calibration methods (VA, SVA, DIR) applied to the standard
classifiers’ outputs for the following Weka classifiers: J48, J48 Bagging, logistic
regression (upper part) and näıve Bayes, neural networks, and SVM Platt (lower
part). The best results for each pair (classifier, dataset) are in bold.

J48 (J) J48 Bagging (JB) logistic regression (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian ∞ 0.380 0.469 ∞ 0.328 0.369 0.344 ∞ 0.342 0.340 0.340 ∞
Breast ∞ 0.607 0.642 ∞ 0.581 0.592 0.636 ∞ 0.584 0.567 0.586 ∞
Diabetes ∞ 0.552 0.635 ∞ 0.504 0.515 0.561 ∞ 0.492 0.490 0.491 ∞
Echo ∞ 0.606 0.670 ∞ 0.556 0.517 0.563 ∞ ∞ 0.589 0.606 ∞
Hepatitis ∞ 0.491 0.528 ∞ 0.420 0.456 0.434 ∞ ∞ 0.393 0.504 ∞
Ionosphere ∞ 0.383 0.410 ∞ ∞ 0.387 0.251 ∞ ∞ 0.387 0.524 ∞
Labor ∞ 0.503 0.537 ∞ 0.427 0.427 0.385 ∞ 1.927 0.687 0.297 ∞
Liver ∞ 0.662 0.866 ∞ 0.609 0.635 0.707 ∞ 0.619 0.622 0.611 ∞
Vote ∞ 0.134 0.145 ∞ 0.135 0.159 0.131 ∞ 1.059 0.188 0.148 ∞

näıve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.839 0.355 0.367 ∞ 0.557 0.427 0.450 ∞ 0.391 0.356 0.351 ∞
Breast 0.663 0.563 0.551 ∞ 0.774 0.615 0.738 ∞ 0.583 0.568 0.582 ∞
Diabetes 0.753 0.495 0.508 ∞ 0.536 0.500 0.519 ∞ 0.491 0.497 0.490 ∞
Echo 0.658 0.505 0.522 ∞ 0.770 0.578 0.605 ∞ 0.558 0.495 0.538 ∞
Hepatitis 0.936 0.365 0.372 ∞ 0.753 0.471 0.484 ∞ 0.435 0.349 0.404 ∞
Ionosphere 0.704 0.262 0.227 ∞ 0.625 0.427 0.379 ∞ 0.359 0.250 0.333 ∞
Labor 1.854 0.410 0.296 ∞ 0.325 0.560 0.298 ∞ 3.643 0.364 0.287 ∞
Liver 0.727 0.649 0.661 ∞ 0.642 0.603 0.615 ∞ 0.645 0.663 0.639 ∞
Vote 0.594 0.218 0.211 ∞ 0.235 0.229 0.158 ∞ 0.125 0.211 0.121 ∞

5 Experimental results

In this section we compare various calibration methods discussed so far by ap-
plying them to six standard scoring classifiers (we will usually omit “scoring” in
this section) available within Weka [6], a machine learning tool developed at the
University of Waikato, NZ. The standard classifiers are J48 decision trees (ab-
breviated to J48, or even to J), J48 decision trees with bagging (J48 Bagging, or
JB), logistic regression (LR), näıve Bayes (NB), neural networks (NN), and sup-
port vector machines calibrated using a sigmoid function as defined by Platt [13]
(SVM Platt, or simply SVM). Each of these standard classifiers produces scores
in the interval [0, 1], which can then be used as probabilistic predictions; how-
ever, in most previous studies these have been found to be inaccurate (see [17]
and [9]). We use the scores generated by classifiers as inputs, and by applying
the DIR (defined in Section 3), Venn–Abers (VA), and simplified Venn–Abers
(SVA, see below) methods we investigate how well we can calibrate the scores
and improve them in their role as probabilistic predictions.

In the set of experiments described in this section we do not perform a direct
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Table 2: The analogue of Table 1 for square loss (RMSE).

J48 (J) J48 Bagging (JB) logistic regresion (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.366 0.346 0.359 0.366 0.313 0.338 0.318 0.323 0.317 0.319 0.319 0.321
Breast 0.472 0.453 0.463 0.473 0.443 0.451 0.460 0.474 0.442 0.437 0.444 0.450
Diabetes 0.449 0.431 0.443 0.449 0.407 0.415 0.420 0.427 0.399 0.401 0.401 0.402
Echo 0.478 0.456 0.460 0.482 0.427 0.417 0.423 0.444 0.457 0.443 0.446 0.475
Hepatitis 0.407 0.393 0.401 0.419 0.362 0.390 0.368 0.391 0.400 0.357 0.384 0.411
Ionosphere 0.318 0.355 0.312 0.318 0.267 0.356 0.261 0.267 0.357 0.363 0.349 0.361
Labor 0.407 0.403 0.402 0.413 0.361 0.371 0.339 0.341 0.294 0.498 0.287 0.303
Liver 0.528 0.482 0.518 0.528 0.457 0.478 0.478 0.493 0.460 0.463 0.458 0.461
Vote 0.187 0.186 0.186 0.187 0.187 0.206 0.186 0.188 0.198 0.233 0.195 0.203

näıve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.392 0.328 0.333 0.335 0.360 0.363 0.361 0.371 0.343 0.324 0.325 0.327
Breast 0.449 0.436 0.427 0.433 0.485 0.465 0.491 0.508 0.443 0.431 0.442 0.447
Diabetes 0.420 0.406 0.410 0.413 0.413 0.408 0.413 0.417 0.399 0.393 0.400 0.402
Echo 0.428 0.408 0.412 0.426 0.457 0.436 0.443 0.468 0.416 0.427 0.418 0.431
Hepatitis 0.357 0.339 0.335 0.342 0.396 0.402 0.379 0.427 0.350 0.350 0.353 0.364
Ionosphere 0.281 0.273 0.250 0.251 0.321 0.378 0.316 0.333 0.312 0.309 0.312 0.316
Labor 0.256 0.363 0.284 0.281 0.279 0.442 0.293 0.307 0.274 0.358 0.280 0.283
Liver 0.480 0.476 0.478 0.487 0.459 0.456 0.456 0.463 0.473 0.477 0.472 0.477
Vote 0.292 0.257 0.251 0.250 0.216 0.271 0.206 0.227 0.183 0.191 0.185 0.188

comparison to the method developed by Langford and Zadrozny [9] primarily
because, as far as we are aware, the algorithms described in their work are not
publicly available.

For the purpose of comparison we use a total of nine datasets with binary la-
bels (encoded as 0 or 1) obtained from the UCI machine learning repository [5]:
Australian Credit (which we abbreviate to Australian), Breast Cancer (Breast),
Diabetes, Echocardiogram (Echo), Hepatitis, Ionosphere, Labor Relations (La-
bor), Liver Disorders (Liver), and Congressional Voting (Vote). The datasets
vary in size as well as the number and type of attributes in order to give a
reasonable range of conditions encountered in practice.

In our comparison we use the two standard loss functions discussed in the
previous section. Namely, on a given test sequence of length n we will calculate
the mean log error (MLE)

1

n

n∑
i=1

λln(pi, yi) (12)

and the root mean square error (RMSE)√√√√ 1

n

n∑
i=1

λsq(pi, yi), (13)
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Algorithm 2 Simplified Venn–Abers predictor

Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)
for y ∈ {0, 1} do

set s to the scoring function for (z1, . . . , zl)
set gy to the isotonic calibrator for

(s(x1), y1), . . . , (s(xl), yl), (s(x), y)
set py := gy(s(x))

end for

where pi is the probabilistic prediction for the label yi of the ith observation in
the test sequence. MLE (12) can be infinite, namely when predicting pi ∈ {0, 1}
while being incorrect. It therefore penalises the overly confident probabilistic
predictions much more significantly than RMSE. We compare the performance
of the standard classifiers with their versions calibrated using the three meth-
ods (VA, SVA, and DIR) under both loss functions for each dataset. In each
experiment we randomly permute the dataset and use the first 2/3 observations
for training and the remaining 1/3 for testing.

One of the potential drawbacks of the Venn–Abers method is its computa-
tional inefficiency: for each test object the scores have to be recalculated for
the training sequence extended by including the test object first labelled as 0
and then labelled as 1. This implies that the total calculation time is at least
2n times that of the underlying classifier, where n is the number of test obser-
vations. Therefore, we define a simplified version of Venn–Abers predictors, for
which the scores are calculated only once without recalculating them for each
test object with postulated labels 0 and 1.

In detail, the simplified Venn–Abers predictor for a given scoring classifier
is defined as follows. Let (z1, . . . , zl) be a training sequence and x be a test
object. Define s to be the scoring function for (z1, . . . , zl), g0 to be the isotonic
calibrator for (

(s(x1), y1), . . . , (s(xl), yl), (s(x), 0)
)
,

and g1 to be the isotonic calibrator for(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 1)

)
(cf. (6) and (7)). The multiprobabilistic prediction output for the label of x
by the simplified Venn–Abers (SVA) predictor is (p0, p1), where p0 := g0(s(x))
and p1 := g1(s(x)). This method, summarized as Algorithm 2, is intermediate
between DIR and the Venn–Abers method.

Notice that Lemma 2 continues to hold for SVA predictors; therefore, they
never suffer infinite loss even under the log loss function. On the other hand, the
following proposition shows that SVA predictors can violate the property (2)
of unbiasedness in the large; in particular, they are not Venn predictors (cf.
Corollary 1).
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Proposition 2. There exists a simplified Venn–Abers predictor violating (2)
for some l.

Proof. Let the object space be the real line, X := R, and the probability distri-
bution generating independent observations (X,Y ) be such that: the marginal
distribution of X is continuous; the probability that X > 0 (and, therefore, the
probability that X < 0) is 1/2; the probability that Y = 1 given X < 0 is 1/3;
the probability that Y = 1 given X > 0 is 2/3. Therefore, P(Y = 1) = 1/2. Let
l be a large number (we are using a somewhat informal language, but formal-
ization will be obvious). Given a training set (z1, . . . , zl), where zi = (xi, yi) for
all i, the scoring function s is:

s(x) :=


0 if x ∈ {x1, . . . , xl} and x < 0

1 if x ∈ {x1, . . . , xl} and x > 0

2 if x /∈ {x1, . . . , xl}.

It is easy to see that, with high probability,

V ≈ 2/3, V = 1.

Therefore, (2) is violated.

Proposition 2 shows that SVA predictors are not always valid; however, the
construction in its proof is artificial, and our hope is that they will be “nearly
valid” in practice, since they are a modification of provably valid predictors.

For each dataset/classifier combination, we repeat the same experiment a
total of 100 times for standard classifiers (denoted W in the tables), SVA, and
DIR and 16 times for VA (because of the computational inefficiency of the latter)
and average the results. The same 100 random splits into training and test sets
are used for W, SVA, and DIR, but for VA the 16 splits are different.

Tables 1–2 compare the overall losses computed according to (12) (MLE,
used in Table 1) and (13) (RMSE, used in Table 2) for probabilities generated
by the standard classifiers as implemented in Weka (W) and the corresponding
Venn–Abers (VA), simplified Venn–Abers (SVA), and direct isotonic-regression
(DIR) predictors. The values in bold indicate the lowest of the four losses for
each dataset/classifier combination. The column titles mention both fuller and
shorter names for the six standard classifiers; the short name “SVM” is especially
appropriate when using VA, SVA, and DIR, in which case the application of the
sigmoid function in Platt’s method is redundant. The three entries of ∞ in
the column W for logistic regression of Table 1 come out as infinities in our
experiments only because of the limited machine accuracy: logistic regression
sometimes outputs probabilistic predictions that are so close to 0 or 1 that they
are rounded to 0 or 1, respectively, by hardware.

In the case of MLE, the VA and SVA methods improve the predictive per-
formance of the majority of the standard classifiers on most datasets. A major
exception is J48 Bagging. The application of bagging to J48 decision trees im-
proves the calibration significantly as bagging involves averaging over different
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Table 3: The ranking of the best three methods (among W, VA, SVA, and DIR)
for each dataset according to the two loss functions (see the text for details).

log loss square loss
Australian W (JB), VA (LR), SVA (LR) W (JB), SVA (JB), VA (LR)
Breast SVA (NB), VA (NB), W (JB) SVA (NB), VA (SVM), DIR (NB)
Diabetes VA (LR), SVA (SVM), W (SVM) VA (SVM), W (LR), SVA (SVM)
Echo VA (SVM), SVA (NB), W (JB) VA (NB), SVA (NB), W (SVM)
Hepatitis VA (SVM), SVA (NB), W (JB) SVA (NB), VA (NB), DIR (NB)
Ionosphere SVA (NB), VA (SVM), W (SVM) SVA (NB), DIR (NB), W (JB)
Labor SVA (SVM), W (NN), VA (SVM) W (NB), SVA (SVM), DIR (NB)
Liver VA (NN), W (JB), SVA (LR) VA (NN), SVA (NN), W (JB)
Vote SVA (SVM), W (SVM), VA (J) W (SVM), SVA (SVM), VA (J)

training sets in order to reduce the underlying classifier’s instability. The ap-
plication of VA and SVA to J48 Bagging is not found to improve the log or
square loss significantly. What makes VA and SVA useful is that for many data
sets other classifiers, less well calibrated than J48 Bagging, provide more useful
scores.

In the case of RMSE, the application of VA and SVA also often improves
probabilistic predictions.

Whereas in the case of square loss the DIR method often produces values
comparable to VA and SVA, under log loss this method fares less well (which
is not obvious from [17], which only uses square loss). In all our experiments
DIR suffers infinite log loss for at least one test observation, which makes the
overall MLE infinite. There are modifications of the DIR method preventing
probabilistic predictions in {0, 1} (such as those mentioned in [12], Section 3.3),
but they are somewhat arbitrary.

Table 3 ranks, for each loss function and dataset, the four calibration meth-
ods: W (none), VA (Venn–Abers), SVA (simplified Venn–Abers), and DIR (di-
rect isotonic regression). Only the first three methods are given (the best, the
second best, and the second worst), where the quality of a method is measured
by the performance of the best underlying classifier (indicated in parenthe-
ses using the abbreviations given in the column titles of Tables 1–2) for the
given method, data set, and loss function. Notice that we are ranking the four
calibration methods rather than the 24 combinations of Weka classifiers with
calibration methods (e.g., were we ranking the 24 combinations, the entry for
log loss and Australian would remain the same but the next entry, for log loss
and Breast, would become “SVA (NB), VA (NB), VA (LR)”).

For MLE, the best algorithm is VA or SVA for 8 data sets out of 9; for
RMSE this is true for 6 data sets out of 9. In all other cases the best algorithm
is W rather than DIR. (And as discussed earlier, in the case of log loss the
performance of DIR is especially poor.) Therefore, it appears that the most
interesting comparisons are between W and VA and between W and SVA.

What is interesting is that VA and SVA perform best on equal numbers of
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datasets, 4 each in the case of MLE and 3 each in the case of RMSE, despite the
theoretical guarantees of validity for the former method (such as Theorem 1).
The similar performance of the two methods needs to be confirmed in more
extensive empirical studies, but if it is, SVA will be a preferable method because
of its greater computational efficiency.

Comparing W and SVA, we can see that SVA performs better than W on
7 data sets out of 9 for MLE, and on 5 data sets out of 9 for RMSE. And
comparing W and VA, we can see that VA performs better than W on 6 data
sets out of 9 for MLE, and on 5 data sets out of 9 for RMSE. This suggests
that SVA might be an improvement of VA not only in computational but also
in predictive efficiency (but the evidence for this is very slim).

6 Conclusion

This paper has introduced a new class of Venn predictors thereby extending the
domain of applicability of the method. Our experimental results suggest that
the Venn–Abers method can potentially lead to better calibrated probabilistic
predictions for a variety of datasets and standard classifiers. The method seems
particularly suitable in cases where alternative probabilistic predictors produce
overconfident but erroneous predictions under an unbounded loss function such
as log loss. In addition, the results suggest that an alternative simplified Venn–
Abers method can yield similar results while retaining computational efficiency.

Unlike the previous methods for improving the calibration of probabilis-
tic predictors, Venn–Abers predictors enjoy theoretical guarantees of validity
(shared with other Venn predictors).
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