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Abstract

Conformal prediction is a method of producing prediction sets that can be ap-
plied on top of a wide range of prediction algorithms. The method has a guar-
anteed coverage probability under the standard IID assumption regardless of
whether the assumptions (often considerably more restrictive) of the underlying
algorithm are satisfied. However, for the method to be really useful it is desirable
that in the case where the assumptions of the underlying algorithm are satisfied,
the conformal predictor loses little in efficiency as compared with the underlying
algorithm (whereas being a conformal predictor, it has the stronger guarantee of
validity). In this paper we explore the degree to which this additional require-
ment of efficiency is satisfied in the case of Bayesian ridge regression; we find
that asymptotically conformal prediction sets differ little from ridge regression
prediction intervals when the standard Bayesian assumptions are satisfied.
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1 Introduction

This paper discusses theoretical properties of the procedure described in the
abstract as applied to Bayesian ridge regression in the primal form. The proce-
dure itself has been discussed earlier in the Bayesian context under the names
of frequentizing ([14], Section 3) and de-Bayesing ([12], p. 101); in this paper,
however, we prefer the name “conformalizing”. The procedure has also been
studied empirically (see, e.g., [12], Figures 10.1–10.5, and [14], Figure 1, cor-
rected in [11], Figure 11.1). To our knowledge, this paper is the first to explore
the procedure theoretically.

The purpose of conformalizing is to make prediction algorithms, first of all
Bayesian algorithms, valid under the assumption that the observations are gen-
erated independently from the same probability measure; we will refer to this
assumption as the IID assumption. This is obviously a desirable step provided
that we do not lose much if the assumptions of the original algorithm happen
to be satisfied. The situation here resembles that in nonparametric hypothesis
testing (see, e.g., [7]), where nonparametric analogues of some classical paramet-
ric tests relying on Gaussian assumptions turned out to be surprisingly efficient
even when the Gaussian assumptions are satisfied.

We start the main part of the paper from Section 2, in which we define
the ridge regression procedure and the corresponding prediction intervals in a
Bayesian setting involving strong Gaussian assumptions. It contains standard
material and so no proofs. The following section, Section 3, applies the con-
formalizing procedure to ridge regression in a way that facilitates theoretical
analysis in the following sections; the resulting “conformalized ridge regression”
is similar to but somewhat different from the algorithm called “ridge regression
confidence machine” in [12].

Section 4 contains our main result. It shows that asymptotically we lose little
when we conformalize ridge regression and the Gaussian assumptions are satis-
fied; namely, conformalizing changes the prediction interval by O(n−1/2) with
high probability, where n is the number of observations. Our main result gives
precise asymptotic distributions for the differences between the left and right
end-points of the prediction intervals output by the Bayesian and conformal pre-
dictors. These are theoretical counterparts of the preliminary empirical results
obtained in [12] (Figures 10.1–10.5 and Section 8.5, pp. 205–207) and [13]. We
then discuss and interpret our main result using the notions of efficiency and
conditional validity (introduced in the previous two sections). Section 5 gives a
more explicit description of conformalized ridge regression, and in Section 6 we
prove the main result.

Other recent theoretical work about efficiency and conditional validity of
conformal predictors includes Lei and Wasserman’s [6]. Whereas our predictor
is obtained by conformalizing ridge regression, Lei and Wasserman’s conformal
predictor is specially crafted to achieve asymptotic efficiency and conditional
validity. It is intuitively clear that whereas our algorithm is likely to produce
reasonable results in practice (in situations where ridge regression produces
reasonable results), Lei and Wasserman’s algorithm is primarily of theoretical
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interest. A significant advantage of their algorithm, however, is that it is guaran-
teed to be asymptotically efficient and conditionally valid under their regularity
assumptions, whereas our algorithm is guaranteed to be asymptotically efficient
and conditionally valid only under the Gaussian assumptions.

2 Bayesian ridge regression

Much of the notation introduced in this section will be used throughout the
paper. We are given a training sequence (x1, y1), . . . , (xn−1, yn−1) and a test
object xn, and our goal is to predict its label yn. Each observation (xi, yi),
i = 1, . . . , n consists of an object xi ∈ Rp and a label yi ∈ R. We are interested
in the case where the number n − 1 of training observations is large, whereas
the number p of attributes is fixed. Our setting is probabilistic; in particular,
the observations are generated by a probability measure.

In this section we do not assume anything about the distribution of the
objects x1, . . . , xn, but given the objects, the labels y1, . . . , yn are generated by
the rule

yi = w · xi + ξi, (1)

where w is a random vector distributed as N(0, (σ2/a)I) (the Gaussian distribu-
tion being parameterized by its mean and covariance matrix, and I := Ip being
the unit p× p matrix), each ξi is distributed as N(0, σ2), the random elements
w, ξ1, . . . , ξn are independent (given the objects), and σ and a are given positive
numbers.

The conditional distribution for the label yn of the test object xn given the
training sequence and xn is

N
(
ŷn, (1 + gn)σ2

)
,

where

ŷn := x′n(X ′X + aI)−1X ′Y, (2)

gn := x′n(X ′X + aI)−1xn, (3)

X = Xn−1 is the design matrix for the training sequence (the (n−1)×p matrix
whose ith row is x′i, i = 1, . . . , n−1), and Y = Yn−1 is the vector (y1, . . . , yn−1)′

of the training labels; see, e.g., [12], (10.24). Therefore, the Bayesian prediction
interval is

(B∗, B
∗) :=

(
ŷn −

√
1 + gnσzε/2, ŷn +

√
1 + gnσzε/2

)
, (4)

where ε is the significance level (the permitted probability of error, so that 1− ε
is the required coverage probability) and zε/2 is the (1 − ε/2)-quantile of the
standard normal distribution N(0, 1).

The prediction interval (4) enjoys several desiderata: it is unconditionally
valid, in the sense that its error probability is equal to the given significance
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level ε; it is also valid conditionally on the training sequence and the test object
xn; finally, this prediction interval is the shortest possible conditionally valid
interval. We will refer to the class of algorithms producing prediction intervals
(4) (and depending on the parameters σ and a) as Bayesian ridge regression
(BRR).

3 Conformalized ridge regression

Conformalized ridge regression (CRR) is a special case of conformal predictors;
the latter are defined in, e.g., [12], Chapter 2, but we will reproduce the definition
in our current context. First we define the CRR conformity measure A as the
function that maps any finite sequence (x1, y1), . . . , (xn, yn) of observations of
any length n to the sequence (α1, . . . , αn) of the following conformity scores αi:
for each i = 1, . . . , n,

αi := |{j = 1, . . . , n | rj ≥ ri}| ∧ |{j = 1, . . . , n | rj ≤ ri}| ,

where (r1, . . . , rn)′ is the vector of ridge regression residuals ri := yi − ŷi,

ŷi := x′i(X
′
nXn + aI)−1X ′nYn

(cf. (2)), Xn is the overall design matrix (the n× p matrix whose ith row is x′i,
i = 1, . . . , n), and Yn is the overall vector of labels (the vector in Rn whose ith
element is yi, i = 1, . . . , n).

Remark. We interpret αi as the degree to which the element (xi, yi) conforms
to the full sequence (x1, y1), . . . , (xn, yn). Intuitively, (xi, yi) conforms to the
sequence if its ridge regression residual is neither among the largest nor among
the smallest. Instead of the simple residuals ri we could have used deleted or
studentized residuals (see, e.g., [12], pp. 34–35), but we choose the simplest
definition, which makes calculations feasible. Another possibility is to use − |ri|
as conformity scores; this choice leads to what was called “ridge regression
confidence machines” in [12], Chapter 2, but its analysis is less feasible.

Given a significance level ε ∈ (0, 1), a training sequence

(x1, y1), . . . , (xn−1, yn−1),

and a test object xn, conformalized ridge regression outputs the prediction set

Γ := {y | py > ε} , (5)

where the p-values py are defined by

py :=
|{i = 1, . . . , n | αyi ≤ αyn}|

n

and the conformity scores αyi are defined by

(αy1 , . . . , α
y
n) := A

(
(x1, y1), . . . , (xn−1, yn−1), (xn, y)

)
. (6)
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Define the prediction interval output by CRR as the closure of the convex hull
of the prediction set Γ; we will use the notation C∗ and C∗ for the left and right
end-points of this interval, respectively. (Later we will introduce assumptions
that will guarantee that Γ itself is an interval from some n on.) As discussed
later in Section 5, CRR is computationally efficient: e.g., its computation time
is O(n lnn) in the on-line mode.

CRR relies on different assumptions about the data as compared with BRR.
Instead of the Gaussian model (1), where ξi ∼ N(0, σ2) and w ∼ N(0, (σ2/a)I),
it uses the assumption that is standard in machine learning: we consider ob-
servations (x1, y1), . . . , (xn, yn) that are IID (independent and identically dis-
tributed).

Proposition 1 ([12], Proposition 2.3). If (x1, y1), . . . , (xn, yn) are IID obser-
vations, the coverage probability of CRR (i.e., the probability of yn ∈ Γ, where
Γ is defined by (5)) is at least 1− ε.

Proposition 1 asserts the unconditional validity of CRR. Its validity condi-
tional on the training sequence and the test object is not, however, guaranteed
(and it is intuitively clear that ensuring validity conditional on the test object
prevents us from relying on the IID assumption about the objects). For a dis-
cussion of conditional validity in the context of conformal prediction, see [6],
Section 2, and, more generally, [10]. Efficiency (narrowness of the prediction
intervals) is not guaranteed either.

The kind of validity asserted in Proposition 1 is sometimes called “conser-
vative validity” since 1 − ε is only a lower bound on the coverage probabil-
ity. However, the definition of conformal predictors can be slightly modified
(using randomization for treatment of borderline cases) to achieve exact valid-
ity; in practice, the difference between conformal predictors and their modified
(“smoothed”) version is negligible. For details, see, e.g., [12], p. 27.

4 Main result

In this section we show that under the Gaussian model (1) complemented by
other natural (and standard) assumptions CRR is asymptotically close to BRR,
and therefore is approximately conditionally valid and efficient. On the other
hand, Proposition 1 guarantees the unconditional validity of CRR under the
IID assumption, regardless of whether (1) holds.

In this section we assume an infinite sequence of observations

(x1, y1), (x2, y2), . . .

but consider only the first n of them and let n→∞. We make both the IID as-
sumption about the objects x1, x2, . . . (the objects are generated independently
from the same distribution) and the assumption (1); however, we relax the as-
sumption that w is distributed as N(0, (σ2/a)I). These are all the assumptions
used in our main result:
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(A1) The random objects xi ∈ Rp, i = 1, 2, . . ., are IID.

(A2) The second-moment matrix E(x1x
′
1) of x1 exists and is non-singular.

(A3) The random vector w ∈ Rp is independent of x1, x2, . . . .

(A4) The labels y1, y2, . . . are generated by yi = w · xi + ξi, where ξi are
Gaussian noise variables distributed as N(0, σ2) and independent between
themselves, of the objects xi, and of w.

Notice that the assumptions imply that the random observations (xi, yi), i =
1, 2, . . ., are IID given w. It will be clear from the proof that the assumptions
can be relaxed further (but we have tried to make them as simple as possible).

Theorem 2. Under the assumptions (A1)–(A4), the prediction sets output by
CRR are intervals from some n on almost surely, and the differences between
the upper and lower ends of the prediction intervals for BRR and CRR are
asymptotically Gaussian:

√
n(B∗ − C∗) law−→ N

(
0,
α(1− α)

f2(ζα)
− σ2µ′Σ−1µ

)
, (7)

√
n(B∗ − C∗)

law−→ N

(
0,
α(1− α)

f2(ζα)
− σ2µ′Σ−1µ

)
, (8)

where α := 1− ε/2, ζα := zε/2σ is the α-quantile of N(0, σ2), f is the density of
N(0, σ2), µ := E(x1) is the expectation of x1, and Σ := E(x1x

′
1) is the second-

moment matrix of x1.

The theorem will be proved in Section 6, and in the rest of this section we will
discuss it. We can see from (7) and (8) that the symmetric difference between
the prediction intervals output by BRR and CRR shrinks to 0 as O(n−1/2) in
Lebesgue measure with high probability.

Let us first see what the typical values of the standard deviation (the square
root of the variance) in (7) and (8) are. It is easy to check that the standard
deviation is proportional to σ; therefore, let us assume σ = 1. The second term
in the variance does not affect it significantly since 0 ≤ µ′Σ−1µ ≤ 1. Indeed,
denoting the covariance matrix of x1 by C and using the Sherman–Morrison
formula (see, e.g., [5], (3)), we have:

µ′Σ−1µ = µ′(C + µµ′)−1µ = µ′
(
C−1 − C−1µµ′C−1

1 + µ′C−1µ

)
µ

= µ′C−1µ− (µ′C−1µ)2

1 + µ′C−1µ
=

µ′C−1µ

1 + µ′C−1µ
∈ [0, 1] (9)

(we write [0, 1] rather than (0, 1) because C is permitted to be singular: see
Appendix A for details). The first term, on the other hand, can affect the vari-
ance more significantly, and the significant dependence of the variance on ε is
natural: the accuracy obtained from the Gaussian model is better for small ε
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Figure 1: The limits for the standard deviation in Theorem 2 as a function
of ε ∈ (0, 1) (left) and ε ∈ (0, 0.05] (right) shown as solid (blue) lines; the
asymptotic expression in (10) shown as a dotted (red) line. In all cases σ = 1.

since it uses all data for estimating the end-points of the prediction interval
rather than relying, under the IID model, on the scarcer information provided
by observations in the tails of the distribution generating the labels. Figure 1
illustrates the dependence of the standard deviation of the asymptotic distribu-
tion on ε. The upper line in it corresponds to µ′Σ−1µ = 0 and the lower line
corresponds to µ′Σ−1µ = 1. The possible values for the standard deviation lie
between the upper and lower lines. The asymptotic behaviour of the standard
deviation as ε→ 0 is given by√

ε(1− ε/2)πe
z2
ε/2 − θ ∼ (−ε ln ε)

−1/2
(10)

uniformly in θ ∈ [0, 1].
The assumptions (A1)–(A4) do not involve a, and Theorem 2 continues

to hold if we set a := 0; this can be checked by going through the proof of
Theorem 2 in Section 6. Theorem 2 can thus also be considered as an efficiency
result about conformalizing the standard non-Bayesian least squares procedure;
this procedure outputs precisely (B∗, B

∗) with a := 0 as its prediction intervals
(see, e.g., [8], p. 131). The least squares procedure has guaranteed coverage
probability under weaker assumptions than BRR (not requiring assumptions
about w); however, its validity is not conditional, similarly to CRR.
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5 Further details of CRR

By the definition of the CRR conformity measure, we can rewrite the conformity
scores in (6) as

αyi :=
∣∣{j = 1, . . . , n | ryj ≥ r

y
i

}∣∣ ∧ ∣∣{j = 1, . . . , n | ryj ≤ r
y
i

}∣∣ , (11)

where the vector of residuals (ry1 , . . . , r
y
n)′ is (In −Hn)Y y, In is the unit n× n

matrix, Hn := Xn(X ′nXn + aI)−1X ′n is the hat matrix, Xn is the overall design
matrix (the n×p matrix whose ith row is x′i, i = 1, . . . , n), and Y y is the overall
vector of labels with the label of the test object set to y (i.e., Y y is the vector in
Rn whose ith element is yi, i = 1, . . . , n− 1, and whose nth element is y). If we
modify the definition of CRR replacing (11) by αyi := −ryi , we will obtain the
definition of upper CRR; and if we replace (11) by αyi := ryi , we will obtain the
definition of lower CRR. It is easy to see that the prediction set Γ output by
CRR at significance level ε is the intersection of the prediction sets output by
upper and lower CRR at significance levels ε/2. We will concentrate on upper
CRR in the rest of this paper: lower CRR is analogous, and CRR is determined
by upper and lower CRR.

Let us represent the upper CRR prediction set in a more explicit
form (following [12], Section 2.3). We are given the training sequence
(x1, y1), . . . , (xn−1, yn−1) and a test object xn; let y be a postulated label
for xn and

Y y := (y1, . . . , yn−1, y)′ = (y1, . . . , yn−1, 0)′ + y(0, . . . , 0, 1)′

be the vector of labels. The vector of conformity scores is −(In − Hn)Y y =
−A− yB, where

A := (In −Hn)(y1, . . . , yn−1, 0)′,

B := (In −Hn)(0, . . . , 0, 1)′.

The components of A and B, respectively, will be denoted by a1, . . . , an and
b1, . . . , bn.

If we define
Si := {y | −ai − biy ≤ −an − bny} , (12)

the definition of the p-values can be rewritten as

py :=
|{i = 1, . . . , n | y ∈ Si}|

n
;

remember that the prediction set is defined by (5). As shown (under a slightly
different definition of Si) in [12], pp. 30–34, the prediction set can be computed
efficiently, in time O(n lnn) in the on-line mode.

6 Proof of Theorem 2

For concreteness, we concentrate on the convergence (7) for the upper ends of
the conformal and Bayesian prediction intervals. We split the proof into a series
of steps.
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Regularizing the rays in upper CRR

The upper CRR looks difficult to analyze in general, since the sets (12) may be
rays pointing in the opposite directions. Fortunately, the awkward case bn ≤ bi
(i < n) will be excluded for large n under our assumptions (see Lemma 4 below).
The following lemma gives a simple sufficient condition for its absence.

Lemma 3. Suppose that, for each c ∈ Rp \ {0},

(c · xn)2 <

n−1∑
i=1

(c · xi)2 + a ‖c‖2 , (13)

where ‖·‖ stands for the Euclidean norm. Then bn > bi for all i = 1, . . . , n− 1.

Intuitively, in the case of a small a, (13) being violated for some c 6= 0 means
that all x1, . . . , xn−1 lie approximately in the same hyperplane, and xn is well
outside it. The condition (13) can be expressed by saying that the matrix∑n−1
i=1 xix

′
i − xnx′n + aI is positive definite.

Proof. First we assume a = 0 (so that ridge regression becomes least squares);
an extension to a ≥ 0 will be easy. In this case Hn is the projection matrix
onto the column space C ⊆ Rn of the overall design matrix Xn and In −Hn is
the projection matrix onto the orthogonal complement C⊥ of C. We can have
bn ≤ bi for i < n (or even b2n ≤ b21 + · · · + b2n−1) only if the angle between
C⊥ and the hyperplane Rn−1 × {0} is 45◦ or less; in other words, if the angle
between C and that hyperplane is 45◦ or more; in other words, if there is an
element (c · x1, . . . , c · xn)′ of C such that its last coordinate is c · xn = 1 and its
projection (c ·x1, . . . , c ·xn−1)′ onto the other coordinates has length at most 1.

To reduce the case a > 0 to a = 0 add the p dummy objects
√
aei ∈ Rp, i =

1, . . . , p, labelled by 0 at the beginning of the training sequence; here e1, . . . , ep
is the standard basis of Rp.

Lemma 4. The case bn ≤ bi for i < n is excluded from some n on almost surely
under (A1)–(A4).

Proof. We will check that (13) holds from some n on. Let us set, without loss

of generality, a := 0. Let Σl := 1
l

∑l
i=1 xix

′
i. Since liml→∞ Σl = Σ a.s.,

|λmin(Σl)− λmin(Σ)| → 0 (l→∞) a.s.,

where λmin(·) is the smallest eigenvalue of the given matrix. Since ‖xn‖2 /n→ 0
a.s.,

1

n− 1

n−1∑
i=1

(c · xi)2 = c′Σn−1c ≥ λmin(Σn−1) ‖c‖2

>
1

2
λmin(Σ) ‖c‖2 > ‖c‖

2 ‖xn‖2

n− 1
≥ (c · xn)2

n− 1

for all c 6= 0 from some n on.
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Simplified upper CRR

Let us now find the upper CRR prediction set under the assumption that bn > bi
for all i < n (cf. Lemmas 3 and 4 above). In this case each set (12) is

Si = (−∞, ti], where ti :=
ai − an
bn − bi

,

except for Sn := R; notice that only t1, . . . , tn−1 are defined. The p-value py for
any potential label y of xn is

py =
|{i = 1, . . . , n | y ∈ Si}|

n
=
|{i = 1, . . . , n− 1 | ti ≥ y}|+ 1

n
.

Therefore, the upper CRR prediction set at significance level ε/2 is the ray

(−∞, t(kn)],

where kn := d(1− ε/2)ne and t(k) = tk:(n−1) stands, as usual, for the kth order
statistic of t1, . . . , tn−1.

Proof proper

As before, X stands for the design matrix Xn−1 based on the first n− 1 obser-
vations. A simple but tedious computation (see Appendix A) gives

ti =
ai − an
bn − bi

= ŷn + (yi − ŷi)
1 + gn
1 + gi

, (14)

where gi := x′i(X
′X + aI)−1xn (cf. (3)). The first term in (14) is the centre of

the Bayesian prediction interval (4); it does not depend on i. We can see that

B∗ − C∗ = (1 + gn)
(
zε/2σ − V(kn)

)
, (15)

where V(kn) is the knth order statistic in the series

Vi :=
ri

1 + gi
(16)

of residuals ri := yi − ŷi adjusted by dividing by 1 + gi. The behaviour of the
order statistics of residuals is well studied: see, e.g., the theorem in [2]. The
presence of 1+gi complicates the situation, and so we first show that gi is small
with high probability.

Lemma 5. Let η1, η2, . . . be a sequence of IID random variables with a finite
second moment. Then maxi=1,...,n |ηi| = o(n1/2) in probability (and even almost
surely) as n→∞.

Proof. By the strong law of large numbers the sequence 1
n

∑n
i=1 η

2
i converges

a.s. as n→∞, and so η2n/n→ 0 a.s. This implies that maxi=1,...,n |ηi| = o(n1/2)
a.s.
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Corollary 6. Under the conditions of the theorem, maxi=1,...,n |gi| = o(n−1/2)
in probability.

Proof. Similarly to the proof of Lemma 4, we have, for almost all sequences
x1, x2, . . .,

max
i=1,...,n

|gi| ≤
‖xn‖maxi=1,...,n ‖xi‖
λmin(X ′X + aI)

< 2
‖xn‖maxi=1,...,n ‖xi‖

(n− 1)λmin(Σ)

from some n on. It remains to combine this with Lemma 5 and the fact that,
by Assumption (A1), ‖xn‖ is bounded by a constant with high probability.

Corollary 7. Under the conditions of the theorem, n1/2
(
r(kn) − V(kn)

)
→ 0 in

probability.

Proof. Suppose that, on the contrary, there are ε > 0 and δ > 0 such that
n1/2

∣∣r(kn) − V(kn)∣∣ > ε with probability at least δ for infinitely many n. Fix
such ε and δ. Suppose, for concreteness, that, with probability at least δ for
infinitely many n, we have n1/2

(
r(kn) − V(kn)

)
> ε, i.e., V(kn) < r(kn) − εn−1/2.

The last inequality implies that Vi < r(kn) − εn−1/2 for at least kn values of i.

By the definition (16) of Vi this in turn implies that ri < r(kn)−εn−1/2 +gir(kn)
for at least kn values of i. By Corollary 6, however, the last addend is less
than εn−1/2 with probability at least 1−δ from some n on (the fact that r(kn) is
bounded with high probability follows, e.g., from Lemma 8 below). This implies
r(kn) < r(kn) with positive probability from some n on, and this contradiction
completes the proof.

The last (and most important) component of the proof is the following ver-
sion of the theorem in [2], itself a version of the famous Bahadur representation
theorem [1].

Lemma 8 ([2], theorem). Under the conditions of the theorem,

n1/2
∣∣∣∣(r(kn) − ζα)− α− Fn(ζα)

f(ζα)
+ µ′(ŵn − w)

∣∣∣∣→ 0 a.s., (17)

where Fn is the empirical distribution function of the noise ξ1, . . . , ξn−1 and
ŵn := (X ′X + aI)−1X ′Y is the ridge regression estimate of w.

For details of the proof (under our assumptions), see Appendix B.
By (15), Corollary 6, and Slutsky’s lemma (see, e.g., [9], Lemma 2.8), it

suffices to prove (7) with the left-hand side replaced by n1/2(V(kn) − zε/2σ).
Moreover, by Corollary 7 and Slutsky’s lemma, it suffices to prove (7) with the
left-hand side replaced by n1/2(r(kn) − zε/2σ); this is what we will do.

Lemma 8 holds in the situation where w is a constant vector (the distribution
of w is allowed to be degenerate). Let R be a Borel set in (Rp)∞ such that (17)
holds for all (x1, x2, . . .) ∈ R, where the “a.s.” is now interpreted as “for almost
all sequences (ξ1, ξ2, . . .)”. By Lebesgue’s dominated convergence theorem, it
suffices to prove (7) with the left-hand side replaced by n1/2(r(kn) − zε/2σ)

10



for a fixed w and a fixed sequence (x1, x2, . . .) ∈ R. Therefore, we fix w and
(x1, x2, . . .) ∈ R; the only remaining source of randomness is (ξ1, ξ2, . . .). Finally,
by the definition of the set R, it suffices to prove (7) with the left-hand side
replaced by

n1/2
α− Fn(ζα)

f(ζα)
− n1/2µ′(ŵn − w). (18)

Without loss of generality we will assume that 1
nX
′
nXn → Σ as n → ∞ (this

extra assumption about R will ensure that Lindeberg’s condition is satisfied
below).

Since E(α− Fn(ζα)) = 0 and

var (α− Fn(ζα)) =
F (ζα)(1− F (ζα))

n− 1
=
α(1− α)

n− 1
,

where F is the distribution function of N(0, σ2), we have

n1/2
α− Fn(ζα)

f(ζα)

law−→ N

(
0,
α(1− α)

f2(ζα)

)
(n→∞)

by the central limit theorem (in its simplest form).
Since ŵn = (X ′X + aI)−1X ′Y is the ridge regression estimate,

E(ŵn − w) = −a(X ′X + aI)−1w =: ∆n, (19)

var(ŵn) = σ2(X ′X + aI)−1X ′X(X ′X + aI)−1 =: Ωn. (20)

Furthermore, for n→∞

n1/2∆n = −n−1/2a
(
X ′X

n
+
aI

n

)−1
w ∼ −n−1/2aΣ−1w → 0,

nΩn = σ2

(
X ′X

n
+
aI

n

)−1
X ′X

n

(
X ′X

n
+
aI

n

)−1
→ σ2Σ−1.

This gives

n1/2µ′(ŵn − w)
law−→ N

(
0, σ2µ′Σ−1µ

)
(n→∞)

(the asymptotic, and even exact, normality is obvious from the formula for ŵn).
Let us now calculate the covariance between the two addends in (18):

cov

(
n1/2

α− Fn(ζα)

f(ζα)
,−n1/2µ′(ŵn − w)

)
=

n

f(ζα)
cov (Fn(ζα)− α, µ′(ŵn − w))

=
n

(n− 1)f(ζα)

n−1∑
i=1

cov
(
1{ξi≤ζα} − α, µ

′(ŵn − w)
)

=
n

(n− 1)f(ζα)

n−1∑
i=1

E
((

1{ξi≤ζα} − α
)
µ′(X ′X + aI)−1X ′ξ

)
,

11



where ξ = (ξ1, . . . , ξn−1)′ and the last equality uses the decomposition ŵn−w =
∆n + (X ′X + aI)−1X ′ξ with the second addend having zero expected value.
Since

E 1{ξi≤ζα}µ
′(X ′X + aI)−1X ′ξ =

n−1∑
j=1

E 1{ξi≤ζα}Ajξj = µαAi,

where Aj := µ′(X ′X + aI)−1xj , j = 1, . . . , n − 1, µα := E 1{ξi≤ζα}ξi =∫ ζα
−∞ xf(x)dx. An easy computation gives µα = −σ2f(ζα), and so we have

cov

(
n1/2

α− Fn(ζα)

f(ζα)
,−n1/2µ′(ŵn − w)

)
=

n

(n− 1)f(ζα)

n−1∑
i=1

µαAi

= −σ2 n

(n− 1)

n−1∑
i=1

Ai = −σ2µ′
(

1

n
X ′X +

a

n
I

)−1
x̄→ −σ2µ′Σ−1µ

as n→∞, where x̄ is the arithmetic mean of x1, . . . , xn−1. Finally, this implies
that (18) converges in law to

N

(
0,
α(1− α)

f2(ζα)
+ σ2µ′Σ−1µ− 2σ2µ′Σ−1µ

)
= N

(
0,
α(1− α)

f2(ζα)
− σ2µ′Σ−1µ

)
;

the asymptotic normality of (18) follows from the central limit theorem with
Lindeberg’s condition, which holds since (18) is a linear combination of the
noise random variables ξ1, . . . , ξn−1 with coefficients whose maximum is o(1) as
n→∞ (this uses the assumption 1

nX
′
nXn → Σ made earlier).

A more intuitive (but not necessarily simpler) proof can be obtained by
noticing that ŵn−w and the residuals are asymptotically (precisely when a = 0)
independent.

7 Conclusion

The results of this paper are asymptotic; it would be very interesting to obtain
their non-asymptotic counterparts. In non-asymptotic settings, however, it is
not always true that conformalized ridge regression loses little in efficiency as
compared with the Bayesian prediction interval; this is illustrated in [12], Sec-
tion 8.5, and illustrated and explained in [13]. The main difference is that CRR
and Bayesian predictor start producing informative predictions after seeing a
different number of observations. CRR, like any other conformal predictor (or
any other method whose validity depends only on the IID assumption), starts
producing informative predictions only after the number of observations exceeds
the inverse significance level 1/ε. After this theoretical lower bound is exceeded,
however, the difference between CRR and Bayesian predictions quickly becomes
very small.

Another interesting direction of further research is to extend our results to
kernel ridge regression.
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A Various computations

For the reader’s convenience, this appendix provides details of various routine
calculations.

A singular C in (9)

Apply (9) to Σε := Σ + εI and Cε := C + εI, where ε > 0, in place of Σ and C,
respectively, and let ε→ 0.

Computing ti for simplified upper CRR

In addition to the notation X for the design matrix Xn−1 based on the first n−1
observations, we will use the notation H for the hat matrix X(X ′X + aI)−1X ′

based on the first n − 1 observations and H̄ for the hat matrix Xn(X ′nXn +
aI)−1X ′n based on the first n observations; the elements of H will be denoted as
hi,j and the elements of H̄ as h̄i,j ; as always, hi stands for the diagonal element
hi,i. To compute ti we will use the formulas (2.18) in [3].

Since B is the last column of In −Hn and

h̄n,n =
x′n(X ′X + aI)−1xn

1 + x′n(X ′X + aI)−1xn
,

we have

bn = 1− x′n(X ′X + aI)−1xn
1 + x′n(X ′X + aI)−1xn

,

bi =
−x′n(X ′X + aI)−1xi

1 + x′n(X ′X + aI)−1xn
.

Therefore,

bn − bi =
1 + x′n(X ′X + aI)−1xi
1 + x′n(X ′X + aI)−1xn

.

Next, letting ŷ stand for the predictions computed from the first n− 1 observa-
tions,

ai =
∑

j=1,...,n−1:j 6=i

(−h̄i,jyj) + (1− h̄i,i)yi
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= yi −
n−1∑
j=1

h̄i,jyj

= yi −
n−1∑
j=1

hi,jyj +

n−1∑
j=1

x′i(X
′X + aI)−1xnx

′
n(X ′X + aI)−1xj

1 + x′n(X ′X + aI)−1xn
yj

= yi − ŷi +
x′i(X

′X + aI)−1xnx
′
n(X ′X + aI)−1X ′Y

1 + x′n(X ′X + aI)−1xn

= yi − ŷi +
x′i(X

′X + aI)−1xnŷn
1 + x′n(X ′X + aI)−1xn

for i < n, and

an =
∑
j<n

(−h̄n,jyj) = −
n−1∑
j=1

x′j(X
′X + aI)−1xn

1 + x′n(X ′X + aI)−1xn
yj

= − Y ′X(X ′X + aI)−1xn
1 + x′n(X ′X + aI)−1xn

.

Therefore,

ai − an = yi − ŷi +
1 + x′i(X

′X + aI)−1xn
1 + x′n(X ′X + aI)−1xn

ŷn.

This gives

ti = (yi − ŷi)
1 + x′n(X ′X + aI)−1xn
1 + x′i(X

′X + aI)−1xn
+ ŷn,

i.e., (14).

Expressing µα via ζα

First we use the substitution y := x2/2σ2 to obtain

1√
2πσ

∫ ζα

0

e−x
2/2σ2

xdx =
σ√
2π

∫ ζ2α/2σ
2

0

eydy =
σ√
2π

(
1− e−ζ

2
α/2σ

2
)
. (21)

Replacing ζα by ∞,

1√
2πσ

∫ ∞
0

e−x
2/2σ2

xdx =
σ√
2π
. (22)

Finally, subtracting (22) from (21) gives

µα =
1√
2πσ

∫ ζα

−∞
e−x

2/2σ2

xdx = − σ√
2π
e−ζ

2
α/2σ

2

= −σ2f(ζα).
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B Proof of Lemma 8

The proof is modelled on the proof of the theorem in Carroll’s technical report
[2] and on Section 2 of [1]. We cannot use the result of [2] since our conditions
are somewhat different. Following [2], we only consider the case of simple linear
regression (p = 1). We will prove that (17) holds for all w, so that w will be a
constant vector in Rp throughout the proof.

We start from the speed of convergence in the ridge regression estimate of
regression weights. Let an := n−1/2 lnn.

Lemma 9. Under our conditions, |ŵn − w| = o(an) a.s.

Proof. This follows immediately from (19) and (20).

The proof uses the following random variables:

Gn(x) := n−1
n∑
i=1

(
1{ri≤x} − 1{ξi≤ζα} − F

(
x+ xi(ŵn − w)

)
+ F (ζα)

)
,

Hn := n1/2 sup
x∈Jn

|Gn(x)| ,

where Jn := [ζα − an, ζα + an] and

Wn(s, t) = n−1/2
n∑
i=1

(
1{ξi≤ζα+ans+antxi}−1{ξi≤ζα}−F (ζα+ans+antxi)+F (ζα)

)
.

(23)

Lemma 10. Under our conditions,

sup {|Wn(s, t)| | s, t ∈ [0, 1]} → 0 a.s. (24)

and, therefore, Hn → 0 a.s.

Proof. Since ri = ξi − xi(ŵn − w) and ŵn − w = o(an) a.s., it is indeed true
that (24) implies Hn → 0 a.s.; therefore, we will only prove (24). Let bn ∼ ln2 n
be a sequence of positive integers. It suffices to consider only s and t of the
form ηr,n := r/bn for r = 0, . . . , bn. To see this, apply Taylor’s expansion: if
|s− ηr,n| ≤ b−1n and |t− ηp,n| ≤ b−1n , then∣∣∣∣∣n−1

n∑
i=1

(F (ζα + san + tanxi)− F (ζα + ηr,nan + ηp,nanxi))

∣∣∣∣∣
≤ n−1

n∑
i=1

f(ζ∗)anb
−1
n (1 + |xi|) = O(anb

−1
n ) = o(n−1/2) a.s.

for some ζ∗ (we have used the integrability of x1).
For fixed s and t we can apply Bernstein’s inequality (see, e.g., [4],

Lemma A.2). Let us fix a sequence x1, x2, . . . such that 1
n

∑n
i=1 xi → µ
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(which happens with probability one under our conditions for some µ, namely
for µ := E(x1)). The cumulative variance (conditional on x1, x2, . . .) of the
addends in (23) does not exceed

n∑
i=1

(ans+ antxi) = O(nan)

a.s. (this again uses the integrability of x1); therefore, for any ε > 0,

P {|Wn(s, t)| > ε} ≤ c0 exp
(
−c1n1/4

)
from some n on, where c0 and c1 are constants depending on ε. The probability
that |Wn(s, t)| > ε for some n ≥ N and some s, t of the form ηr,n does not
exceed

∞∑
n=N

b2nc0 exp
(
−c1n1/4

)
→ 0 (N →∞) a.s.

This completes the proof of the lemma.

Remember that kn = dαne.

Lemma 11. From some n on, r(kn) ∈ Jn a.s.

Proof. We will only show that r(kn) ≤ ζα + an from some n on a.s. Since

P
{
r(kn) > ζα + an

}
≤ P

{
n∑
i=1

1{ξi≤ζα+an+xi(ŵn−w)} ≤ kn

}
.

By Lemma 9, it suffices to show the existence of an ε > 0 for which QN (ε)→ 0
as N →∞, where

QN (ε) := P

{
n∑
i=1

1{ξi≤ζα+an+tanxi} ≤ kn for some t ∈ [0, ε] and n ≥ N

}

= P
{
Fn(ζα + an) ≤ kn/n+ n−1

n∑
i=1

(
F (ζα + an)− F (ζα + an + tanxi)

)
− n−1/2 (Wn(1, t)−Wn(1, 0)) for some t ∈ [0, ε] and n ≥ N

}
.

Using Lemma 10 and the fact that

n−1
n∑
i=1

(
F (ζα + an)− F (ζα + an + tanxi)

)
= −n−1

n∑
i=1

f(ζα + an)tanxi +O

(
n−1

n∑
i=1

t2a2nx
2
i

)
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= −n−1
n∑
i=1

f(ζα)tanxi +O

(
n−1

n∑
i=1

ta2nxi

)
+O(a2n)

= −f(ζα)tanµ+O
(

(ln lnn)1/2n−1/2an

)
+O(a2n)

= −f(ζα)tanµ+ o(n−1/2) a.s.

(where µ := E(x1)), we obtain

QN (ε) = P
{
Fn(ζα + an) ≤ α− tanµf(ζα) + o(n−1/2)

for some t ∈ [0, ε] and n ≥ N
}
.

By Hoeffding’s inequality (see, e.g., [4], Lemma A.3), when δ > 0 is sufficiently
small,

P {Fn(ζα + an) ≤ α+ δan} ≤ exp
(
−cna2n

)
= n−c lnn

for some constant c > 0. This implies that indeed QN (ε)→ 0 as N →∞.

Now we can finish the proof of Lemma 8. Let En be the empirical distribution
function of ri. Lemma 9 and the second order Taylor expansion imply

Gn(r(kn)) = En(r(kn))− Fn(ζα)

− n−1
n∑
i=1

(
F (r(kn)) + f(r(kn))xi(ŵn − w)− F (ζα)

)
+O

(
1

n

n∑
i=1

x2i

)
o(a2n)

= En(r(kn))− Fn(ζα)− F (r(kn)) + F (ζα) + n−1
n∑
i=1

f(r(kn))xi(ŵn − w)

+ o(n−1/2) a.s. (25)

Similarly,

Gn(ζα) = En(ζα)− Fn(ζα)− F (ζα) + F (ζα) + n−1
n∑
i=1

f(ζα)xi(ŵn − w)

+ o(n−1/2) a.s. (26)

Subtracting (25) from (26) and using Lemmas 10 and 11 and the fact that
En(r(kn)) = kn/n, we obtain

n1/2
∣∣F (r(kn))− F (ζα)− kn/n+ En(ζα)

∣∣
≤ n1/2n−1

n∑
i=1

∣∣f(r(kn))− f(ζα)
∣∣xi(ŵn − w)) = o(n1/2a2n)→ 0 a.s. (27)

The statement of Lemma 8 can now be obtained by plugging

F (r(kn))− F (ζα) = (r(kn) − ζα)f(ζα) + o(n−1/2) a.s.
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(which follows from the second order Taylor expansion and Lemma 11) and

En(ζα) = Fn(ζα) + n−1/2Wn(0, a−1n (ŵn − w))

+ n−1
n∑
i=1

(
F (ζα + xi(ŵn − w))− F (ζα)

)
(which follows from the definition of W ) into (27). Indeed, the addend involving
Wn is o(n−1/2) a.s. by Lemma 10 and, as we will see momentarily,

n−1
n∑
i=1

(
F (ζα +xi(ŵn−w))−F (ζα)

)
− f(ζα)µ(ŵn−w) = o(n−1/2) a.s. (28)

Therefore, it remains to prove (28). By the second order Taylor expansion, the
minuend on the left-hand side of (28) can be rewritten as

n−1
n∑
i=1

f
(
ζα
)
xi(ŵn − w)) +O

(
n−1

n∑
i=1

x2i

)
o(a2n)

= n−1
n∑
i=1

f(ζα)xi(ŵn − w)) + o(n−1/2) a.s. (29)

where we have used a−1n (ŵn − w)→ 0 a.s. (Lemma 9) and Ex21 <∞. And the
difference between the first addend of (29) and the subtrahend on the left-hand
side of (28) is O(n−1an(n ln lnn)1/2) = o(n−1/2).
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