
Large-scale probabilistic prediction with

and without validity guarantees

Vladimir Vovk, Ivan Petej, and Valentina Fedorova

ïðàêòè÷åñêèå âûâîäû

òåîðèè âåðîÿòíîñòåé

ìîãóò áûòü îáîñíîâàíû

â êà÷åñòâå ñëåäñòâèé

ãèïîòåç î ïðåäåëüíîé

ïðè äàííûõ îãðàíè÷åíèÿõ

ñëîæíîñòè èçó÷àåìûõ ÿâëåíèé

On-line Compression Modelling Project (New Series)

Working Paper #13

First posted November 2, 2015. Last revised November 3, 2019.

Project web site:
http://alrw.net

Abstract

This paper studies theoretically and empirically a method of turning machine-
learning algorithms into probabilistic predictors that automatically enjoys a
property of validity (perfect calibration) and is computationally efficient. The
price to pay for perfect calibration is that these probabilistic predictors produce
imprecise (in practice, almost precise for large data sets) probabilities. When
these imprecise probabilities are merged into precise probabilities, the resulting
predictors, while losing the theoretical property of perfect calibration, are con-
sistently more accurate than the existing methods in empirical studies.

The conference version of this paper published in Advances in Neural Informa-
tion Processing Systems 28, 2015.

Contents

1 Introduction 1

2 Inductive Venn–Abers predictors (IVAPs) 2

3 Cross Venn–Abers predictors (CVAPs) 10

4 Making probability predictions out of multiprobability ones 11

5 Comparison with other calibration methods 12
5.1 Platt’s method . 12
5.2 Isotonic regression . 15

6 Empirical studies 16

7 Conclusion 26

References 28

1 Introduction

Prediction algorithms studied in this paper belong to the class of Venn–Abers
predictors, introduced in [19]. They are based on the method of isotonic regres-
sion [1] and prompted by the observation that when applied in machine learning
the method of isotonic regression often produces miscalibrated probability pre-
dictions (see, e.g., [8, 9]); it has also been reported ([3], Section 1) that isotonic
regression is more prone to overfitting than Platt’s scaling [13] when data is
scarce. The advantage of Venn–Abers predictors is that they are a special case
of Venn predictors ([18], Chapter 6), and so ([18], Theorem 6.6) are always well-
calibrated (cf. Proposition 1 below). They can be considered to be a regularized
version of the procedure used by [20], which helps them resist overfitting.

The main desiderata for Venn (and related conformal, [18], Chapter 2) pre-
dictors are validity, predictive efficiency, and computational efficiency. This pa-
per introduces two computationally efficient versions of Venn–Abers predictors,
which we refer to as inductive Venn–Abers predictors (IVAPs) and cross-Venn–
Abers predictors (CVAPs). The ways in which they achieve the three desiderata
are:

• Validity (in the form of perfect calibration) is satisfied by IVAPs automa-
tically, and the experimental results reported in this paper suggest that it
is inherited by CVAPs.

• Predictive efficiency is determined by the predictive efficiency of the under-
lying learning algorithms (so that the full arsenal of methods of modern
machine learning can be brought to bear on the prediction problem at
hand).

• Computational efficiency is, again, determined by the computational effi-
ciency of the underlying algorithm; the computational overhead of ex-
tracting probabilistic predictions consists of sorting (which takes time
O(n log n), where n is the number of observations) and other computa-
tions taking time O(n).

An advantage of Venn prediction over conformal prediction, which also enjoys
validity guarantees, is that Venn predictors output probabilities rather than p-
values, and probabilities, in the spirit of Bayesian decision theory, can be easily
combined with utilities to produce optimal decisions.

In Sections 2 and 3 we discuss IVAPs and CVAPs, respectively. Section 4 is
devoted to minimax ways of merging imprecise probabilities into precise proba-
bilities and thus making IVAPs and CVAPs precise probabilistic predictors.

In this paper we concentrate on binary classification problems, in which the
objects to be classified are labelled as 0 or 1. Most of machine learning algo-
rithms are scoring algorithms, in that they output a real-valued score for each
test object, which is then compared with a threshold to arrive at a categorical
prediction, 0 or 1. As precise probabilistic predictors, IVAPs and CVAPs are
ways of converting the scores for test objects into numbers in the range [0, 1] that

1

can serve as probabilities, or calibrating the scores. In Section 5 we discuss two
existing calibration methods, Platt’s [13] and the method [20] based on isotonic
regression, and compare them with IVAPs and CVAPs theoretically. Section 6
is devoted to experimental comparisons and shows that CVAPs consistently
outperform the two existing methods.

2 Inductive Venn–Abers predictors (IVAPs)

In this paper we consider data sequences (usually loosely referred to as sets)
consisting of observations z = (x, y), each observation consisting of an object x
and a label y ∈ {0, 1}; we only consider binary labels. We are given a training
set whose size will be denoted l.

This section introduces inductive Venn–Abers predictors. Our main concern
is how to implement them efficiently, but as functions, an IVAP is defined in
terms of a scoring algorithm (see the last paragraph of the previous section) as
follows:

• Divide the training set of size l into two subsets, the proper training set
of size m and the calibration set of size k, so that l = m+ k.

• Train the scoring algorithm on the proper training set.

• Find the scores s1, . . . , sk of the calibration objects x1, . . . , xk.

• When a new test object x arrives, compute its score s. Fit isotonic re-
gression to (s1, y1), . . . , (sk, yk), (s, 0) obtaining a function f0. Fit isoto-
nic regression to (s1, y1), . . . , (sk, yk), (s, 1) obtaining a function f1. The
multiprobability prediction for the label y of x is the pair (p0, p1) :=
(f0(s), f1(s)) (intuitively, the prediction is that the probability that y = 1
is either f0(s) or f1(s)).

Notice that the multiprobability prediction (p0, p1) output by an IVAP al-
ways satisfies p0 < p1, and so p0 and p1 can be interpreted as the lower and
upper probabilities, respectively; in practice, they are close to each other for
large training sets.

First we state formally the property of validity of IVAPs (adapting the ap-
proach of [19] to IVAPs). A random variable P taking values in [0, 1] is perfectly
calibrated (as a predictor) for a random variable Y taking values in {0, 1} if
E(Y | P) = P a.s. A selector is a random variable taking values in {0, 1}. As a
general rule, in this paper random variables are denoted by capital letters (e.g.,
X are random objects and Y are random labels).

Proposition 1. Let (P0, P1) be an IVAP’s prediction for X based on a training
sequence (X1, Y1), . . . , (Xl, Yl). There is a selector S such that PS is perfectly
calibrated for Y provided the random observations (X1, Y1), . . . , (Xl, Yl), (X,Y)
are i.i.d.

2

Our next proposition concerns the computational efficiency of IVAPs; both
propositions will be proved later in the section.

Proposition 2. Given the scores s1, . . . , sk of the calibration objects, the pre-
diction rule for computing the IVAP’s predictions can be computed in time
O(k log k) and space O(k). Its application to each test object takes time O(log k).
Given the sorted scores of the calibration objects, the prediction rule can be com-
puted in time and space O(k).

Proofs of both statements rely on the geometric representation of isotonic
regression as the slope of the GCM (greatest convex minorant) of the CSD
(cumulative sum diagram): see [2], pages 9–13 (especially Theorem 1.1). To
make our exposition more self-contained, we define both GCM and CSD below.

First we explain how to fit isotonic regression to (s1, y1), . . . , (sk, yk) (without
necessarily assuming that si are the calibration scores and yi are the calibration
labels, which will be needed to cover the use of isotonic regression in IVAPs). We
start from sorting all scores s1, . . . , sk in the increasing order and removing the
duplicates. (This is the most computationally expensive step in our calibration
procedure, O(k log k) in the worst case.) Let k′ ≤ k be the number of distinct
elements among s1, . . . , sk, i.e., the cardinality of the set {s1, . . . , sk}. Define s′j ,
j = 1, . . . , k′, to be the jth smallest element of {s1, . . . , sk}, so that s′1 < s′2 <
· · · < s′k′ . Define wj :=

∣∣{i = 1, . . . , k : si = s′j
}∣∣ to be the number of times s′j

occurs among s1, . . . , sk. Finally, define

y′j :=
1

wj

∑
i=1,...,k:si=s′j

yi

to be the average label corresponding to si = s′j .
The CSD of (s1, y1), . . . , (sk, yk) is the set of points

Pi :=

 i∑
j=1

wj ,

i∑
j=1

y′jwj

 , i = 0, 1, . . . , k′; (1)

in particular, P0 = (0, 0). The GCM is the greatest convex minorant of
the CSD. The value at s′i, i = 1, . . . , k′, of the isotonic regression fitted to

(s1, y1), . . . , (sk, yk) is defined to be the slope of the GCM between
∑i−1
j=1 wj

and
∑i
j=1 wj ; the values at other s are somewhat arbitrary (namely, the value

at s ∈ (s′i, s
′
i+1) can be set to anything between the left and right slopes of the

GCM at
∑i
j=1 wj) but are never needed in this paper (unlike in the standard

use of isotonic regression in machine learning, [20]): e.g., f1(s) is the value of
the isotonic regression fitted to a sequence that already contains (s, 1).

Proof of Proposition 1. Set S := Y . The statement of the proposition even
holds conditionally on knowing the values of (X1, Y1), . . . , (Xm, Ym) and the
multiset *(Xm+1, Ym+1), . . . , (Xl, Yl), (X,Y)+; this knowledge allows us to com-
pute the scores *s1, . . . , sk, s+ of the calibration objects Xm+1, . . . , Xl and the

3

test object X. The only remaining randomness is over the equiprobable per-
mutations of (Xm+1, Ym+1), . . . , (Xl, Yl), (X,Y); in particular, (s, Y) is drawn
randomly from the multiset *(s1, Ym+1), . . . , (sk, Yl), (s, Y)+. It remains to no-
tice that, according to the GCM construction, the average label of the calibra-
tion and test observations corresponding to a given value of PS is equal to PS .

The idea behind computing the pair (f0(s), f1(s)) efficiently is to pre-
compute two vectors F 0 and F 1 storing f0(s) and f1(s), respectively, for all
possible values of s. Let k′ and s′i be as defined above in the case where s1, . . . , sk
are the calibration scores and y1, . . . , yk are the corresponding labels. The vec-
tors F 0 and F 1 are of length k′, and for all i = 1, . . . , k′ and both ε ∈ {0, 1}, F εi
is the value of fε(s) when s = s′i. Therefore, for all i = 1, . . . , k′:

• F 1
i is also the value of f1(s) when s is just to the left of s′i;

• F 0
i is also the value of f0(s) when s is just to the right of s′i.

Since f0 and f1 can change their values only at the points s′i, the vectors F 0

and F 1 uniquely determine the functions f0 and f1, respectively.

Remark. There are several algorithms for performing isotonic regression on a
partially, rather than linearly, ordered set: see, e.g., [2], Section 2.3 (although
one of the algorithms described in that section, the Minimax Order Algorithm,
was later shown to be defective [10, 12]). Therefore, IVAPs (and CVAPs be-
low) can be defined in the situation where scores take values only in a partially
ordered set; moreover, Proposition 1 will continue to hold. (For the reader fa-
miliar with the notion of Venn predictors we could also add that Venn–Abers
predictors will continue to be Venn predictors, which follows from the isotonic
regression being the average of the original function over certain equivalence
classes.) The importance of partially ordered scores stems from the fact that
they enable us to benefit from a possible “synergy” between two or more pre-
diction algorithms [16]. Suppose, e.g., that one prediction algorithm outputs
(scalar) scores s11, . . . , s

1
k for the calibration objects x1, . . . , xk and another out-

puts s21, . . . , s
2
k for the same calibration objects; we would like to use both sets

of scores. We could merge the two sets of scores into composite vector scores,
si := (s1i , s

2
i), i = 1, . . . , k, and then classify a new object x as described ear-

lier using its composite score s := (s1, s2), where s1 and s2 are the scalar scores
computed by the two algorithms and the partial order between composite scores
is defined as usual,

(s1, s2) � (t1, t2)⇐⇒ (s1 ≤ t1) & (s2 ≤ t2).

Preliminary results reported in [16] in a related context suggest that the re-
sulting predictor can outperform predictors based on the individual scalar sco-
res. However, we will not pursue this idea further in this paper.

4

Computational details of IVAPs

Let k′, s′i, and wi be as defined above in the case where s1, . . . , sk and y1, . . . , yk
are the calibration scores and labels. The corners of a GCM are the points on
the GCM where the slope of the GCM changes. It is clear that the corners
belong to the CSD, and we also add the extreme points (P0 and Pk′ in the case
of (1)) of the CSD to the list of corners.

We will only explain in detail how to compute F 1; the computation of F 0

is analogous and will be explained only briefly. First we explain how to com-
pute F 1

1 .
Extend the CSD as defined above (in the case where s1, . . . , sk and y1, . . . , yk

are the calibration scores and labels) by adding the point P−1 := (−1,−1). The
corresponding GCM will be referred to as the initial GCM ; it has at most k′+2
corners. Algorithm 1, which operates with a stack S (initially empty), computes
the corners; it is a trivial modification of Graham’s scan ([6]; [4], Section 33.3).
The corners are returned on the stack S, and they are ordered from left to right
(P−1 being at the bottom of S and Pk′ at the top). The operator “and” in
line 4 is, as usual, short circuiting. The expression “the angle formed by points
a, b, and c makes a nonleft (resp. nonright) turn” may be taken to mean that
(b − a) × (c − b) ≤ 0 (resp. ≥ 0), where × stands for cross product of planar
vectors; this avoids computing angles and divisions (see, e.g., [4], Section 33.1).

Algorithm 1 allows us to compute F 1
1 as the slope of the line between the

two bottom corners in S, but this will be done by the next algorithm.
The rest of the procedure for computing the vector F 1 is shown as Algo-

rithm 2. The main data structure in Algorithm 2 is a stack S′, which is initiali-
zed (in lines 1–2) by putting in it all corners of the initial GCM in reverse order
as compared with S (so that P−1 = (−1,−1) is initially at the top of S′).

At each point in the execution of Algorithm 2 we will have a length-1 active
interval and the active corner, which will nearly always be at the top of the
stack S′. The initial CSD can be visualized by connecting each pair of adja-
cent points: P−1 and P0, P0 and P1, etc. It stretches over the interval [−1, k′]
of the horizontal axis; the subinterval [−1, 0] corresponds to the test score s

(assumed to be to the left of all s′i) and each subinterval
[∑i−1

j=1 wj ,
∑i
j=1 wj

]

Algorithm 1 Initializing the corners for computing F 1

1: Push(P−1, S)
2: Push(P0, S)
3: for i ∈ {1, 2, . . . , k′}
4: while S.size > 1 and the angle formed by points

Next-To-Top(S), Top(S), and Pi
makes a nonleft turn

5: Pop(S)

6: Push(Pi, S)

7: return S

5

Algorithm 2 Computing F 1

1: while ¬Stack-Empty(S)
2: Push(Pop(S), S′)

3: for i ∈ {1, 2, . . . , k′}
4: set F 1

i to the slope of
−−−−−−−−−−−−−−−−−−−−−→
Top(S′),Next-To-Top(S′)

5: Pi−1 = Pi−2 + Pi − Pi−1
6: if Pi−1 is at or above

−−−−−−−−−−−−−−−−−−−−−→
Top(S′),Next-To-Top(S′)

7: continue
8: Pop(S′)
9: while S′.size > 1 and the angle formed by points

Pi−1, Top(S′), and Next-To-Top(S′)
makes a nonleft turn

10: Pop(S′)

11: Push(Pi−1, S
′)

12: return F 1

corresponds to the calibration score s′i, i = 1, . . . , k′. The active corner is initi-
ally at P−1 = (−1,−1); the corners to the left of the active corner are irrelevant
and ignored (not remembered in S′). The active interval is always between the
first coordinate of Top(S′) and the first coordinate of Next-To-Top(S′). At
each iteration i = 1, . . . , k′ of the main loop 3–11 we are computing F 1

i , i.e.,
f1(s) for the situation where s is between s′i−1 and s′i (meaning to the left of s′1
if i = 1), and after that we swap the active interval (corresponding to s) and
the interval corresponding to s′i; of course, after swapping pieces of CSD are
adjusted vertically in order to make the CSD as a whole continuous.

At the beginning of each iteration i of the loop 3–11 we have the CSD

P−1, P0, P1, . . . , Pk′ (2)

corresponding to

the points s′1, . . . , s
′
i−1, s, s

′
i, s
′
i+1, . . . , s

′
k′

with the weights w1, . . . , wi−1, 1, wi, wi+1, . . . , wk′

(respectively); the active interval is the projection of
−−−−−−−→
Pi−2, Pi−1 (onto the ho-

rizontal axis, here and later). At the end of that iteration we have the CSD
which looks identical to (2) but in fact contains a different point Pi−1 (cf. line 5
of the algorithm) and corresponds to

the points s′1, . . . , s
′
i−1, s

′
i, s, s

′
i+1, . . . , s

′
k′

with the weights w1, . . . , wi−1, wi, 1, wi+1, . . . , wk′

(respectively); the active interval becomes the projection of
−−−−−→
Pi−1, Pi. To achieve

this, in line 5 we redefine Pi−1 to be the reflection of the old Pi−1 across the

6

Algorithm 3 Initializing the corners for computing F 0

1: Push(Pk′+1, S)
2: Push(Pk′ , S)
3: for i ∈ {k′ − 1, k′ − 2, . . . , 0}
4: while S.size > 1 and the angle formed by points Next-To-Top(S),

Top(S), and Pi makes a nonright turn
5: Pop(S)

6: Push(Pi, S)

7: return S

mid-point (Pi−2 + Pi)/2. The stack S′ always consists of corners of the GCM
of the current CSD, and it contains all the corners to the right of the active
interval (plus one more corner, which is the active corner).

At each iteration i of the loop 3–11:

• We report the slope of the GCM over the active interval as F 1
i (line 4).

• We then swap the fragments of the CSD corresponding to the active in-
terval and to s′i leaving the rest of the CSD intact. This way the active

interval moves to the right (from the projection of
−−−−−−−→
Pi−2, Pi−1 to the pro-

jection of
−−−−−→
Pi−1, Pi).

• If the point Pi−1 above the left end-point of the active interval is above
(or at) the GCM, move to the next iteration of the loop. (The active
corner does not change.) The rest of this description assumes that Pi−1
is strictly below.

• Make Pi−1 the active corner. Redefine the GCM to the right of the active
corner by connecting the active corner to the right-most corner C such
that the slope of the line connecting the active corner and that corner is
minimal; all the corners between the active corner and that right-most
corner C are then forgotten.

Lemma 1. The worst-case computation time of Algorithms 1 and 2 is O(k′).

Proof. In the case of Algorithm 1, see [4], Section 33.3. In the case of Algo-
rithm 2, it suffices to notice that the total number of iterations for the while
loop does not exceed the total number of elements pushed onto S′ (since at each
iteration we pop an element off S′); and the total number of elements pushed
onto S′ is at most k′ (in the first for loop) plus k′ (in the second for loop).

For convenience of the reader wishing to program IVAPs and CVAPs, we also
give the counterparts of Algorithms 1 and 2 for computing F 0: see Algorithms 3
and 4 below. In those algorithms, we do not need the point P−1 anymore;
however, we need a new point Pk′+1 := Pk′ + (1, 0). The stacks S and S′ that
they use are initially empty.

7

Algorithm 4 Computing F 0

1: while ¬Stack-Empty(S)
2: Push(Pop(S), S′)

3: for i ∈ {k′, k′ − 1, . . . , 1}
4: set F 0

i to the slope of
−−−−−−−−−−−−−−−−−−−−−→
Top(S′),Next-To-Top(S′)

5: Pi = Pi−1 + Pi+1 − Pi
6: if Pi is at or above

−−−−−−−−−−−−−−−−−−−−−→
Top(S′),Next-To-Top(S′)

7: continue
8: Pop(S′)
9: while S′.size > 1 and the angle formed by points Pi,

Top(S′), and Next-To-Top(S′) makes a nonright turn
10: Pop(S′)

11: Push(Pi, S
′)

12: return F 0

Alternatively, we could use the algorithm for computing F 1 in order to com-
pute F 0 by the following lemma.

Lemma 2. For all i ∈ {1, . . . , k′},

F 0
i (s′1, . . . , s

′
k′ , w1, . . . , wk′ , y

′
1, . . . , y

′
k′)

= 1− F 1
i

(
−s′1, . . . ,−s′k′ , w1, . . . , wk′ , 1− y′1, . . . , 1− y′k′

)
(3)

(where the dependence on various parameters is made explicit).

Proof. The lemma follows from the equality

IR [s1, . . . , sk, w1, . . . , wk, y1, . . . , yk] (si)

= 1− IR [−s1, . . . ,−sk, w1, . . . , wk, 1− y1, . . . , 1− yk] (−si), (4)

where all variables are generic and IR stands for “isotonic regression” (it is the
operator mapping a data set to its isotonic regression function). Indeed, (3) can
be rewritten as

IR
[
s′1, . . . , s

′
k′ , w1, . . . , wi−1, wi + 1, wi+1, . . . , wk′ ,

y′1, . . . , y
′
i−1,

wiy
′
i

wi + 1
, y′i+1, . . . , y

′
k′

]
(s′i)

= 1− IR
[
−s′1, . . . ,−s′k′ , w1, . . . , wi−1, wi + 1, wi+1, . . . , wk′ ,

1− y′1, . . . , 1− y′i−1,
wi(1− y′i) + 1

wi + 1
, 1− y′i+1, . . . , 1− y′k′

]
(−s′i),

which is a special case of (4) since

wi(1− y′i) + 1

wi + 1
= 1− wiy

′
i

wi + 1
.

8

Algorithm 5 BST(a, b) (to create the binary search tree, run BST(1, k′))

1: if b = a
2: construct the binary tree

whose root has key s′a and payload {F 0
a , F

1
a },

left child is a leaf with payload {F 0
a−1, F

1
a },

and right child is a leaf with payload {F 0
a , F

1
a+1}

3: return its root
4: else if b = a+ 1
5: construct the binary tree

whose root has key s′a and payload {F 0
a , F

1
a },

left child is a leaf with payload {F 0
a−1, F

1
a },

and right child is BST(b, b)
6: return its root
7: else if
8: c = b(a+ b)/2c
9: construct the binary tree

whose root has key s′c and payload {F 0
c , F

1
c },

left child is BST(a, c− 1),
and right child is BST(c+ 1, b)

10: return its root

After computing F 0 and F 1 we can arrange the calibration scores s′1, . . . , s
′
k′

into a binary search tree: see Algorithm 5, where F 0
0 is defined to be 0 and F 1

k′+1

is defined to be 1; we will refer to s′i as the keys of the corresponding nodes
(only internal nodes will have keys). Algorithm 5 is in fact more general than
what we need: it computes the binary search tree for the scores s′a, s

′
a+1, . . . , s

′
b

for a ≤ b; therefore, we need to run BST(1, k′). The size of the binary search
tree is 2k′+1; k′ of its nodes are internal nodes corresponding to different values
of s′i, i = 1, . . . , k′, and the other k′ + 1 of its nodes are leaves corresponding to
the k′ + 1 intervals formed by the points s′1, . . . , s

′
k′ .

Once we have the binary search tree it is easy to compute the prediction for a
test object x in time logarithmic in k′: see Algorithm 6, which passes x through
the tree and uses N to denote the current node. Formally, we give the test
object x, the proper training set T ′, and the calibration set T ′′ as the inputs of
Algorithm 6; however, the algorithm uses for prediction the binary search tree
built from T ′ and T ′′, and the bulk of work is done in Algorithms 1–5.

The worst-case computational complexity of the overall procedure involves
the following components:

• Training the algorithm on the proper training set, computing the scores
of the calibration objects, and computing the scores of the test objects;
at this stage the computation time is determined by the underlying algo-
rithm.

• Sorting the scores of the calibration objects takes time O(k log k).

9

Algorithm 6 IVAP(T ′, T ′′, x) // inductive Venn–Abers predictor

1: set N to the root of the binary search tree and compute the score s of x
2: while N is not a leaf
3: if s < key(N)
4: set N to N ’s left child
5: else if s > key(N)
6: set N to N ’s right child
7: else // if s = key(N)
8: return payload(N)

9: return payload(N)

• Running our procedure for pre-computing f0 and f1 takes time O(k) (by
Lemma 1).

• Processing each test object takes an additional time of O(log k) (using
binary search).

In principle, using binary search does not require an explicit construction of a
binary search tree (cf. [4], Exercise 2.3-5), but once we have a binary search
tree we can easily transform it into a red-black tree, which allows us to add new
observations to (and remove old observations from) the calibration set in time
O(log k) ([4], Chapter 13).

3 Cross Venn–Abers predictors (CVAPs)

A CVAP is just a combination of K IVAPs, where K is the parameter of the
algorithm. It is described as Algorithm 7, where IVAP(A,B, x) stands for the
output of IVAP applied to A as proper training set, B as calibration set, and x as
test object, and GM stands for geometric mean (so that GM(p1) is the geometric
mean of p11, . . . , p

K
1 and GM(1−p0) is the geometric mean of 1−p10, . . . , 1−pK0).

The folds should be of approximately equal size, and usually the training set
is split into folds at random (although we choose contiguous folds in Section 6
to facilitate reproducibility). One way to obtain a random assignment of the
training observations to folds (see line 1) is to start from a regular array in which
the first l1 observations are assigned to fold 1, the following l2 observations
are assigned to fold 2, up to the last lK observations which are assigned to
fold K, where |lk − l/K| < 1 for all k, and then to apply a random permutation.
Remember that the procedure Randomize-in-Place ([4], Section 5.3) can do
the last step in timeO(l). See the next section for a justification of the expression
GM(p1)/(GM(1− p0) + GM(p1)) used for merging the IVAPs’ outputs.

10

Algorithm 7 CVAP(T, x) // cross-Venn–Abers predictor for training set T

1: split the training set T into K folds T1, . . . , TK
2: for k ∈ {1, . . . ,K}
3: (pk0 , p

k
1) := IVAP(T \ Tk, Tk, x)

4: return GM(p1)/(GM(1− p0) + GM(p1))

4 Making probability predictions out of multi-
probability ones

In CVAP (Algorithm 7) we merge the K multiprobability predictions output
by K IVAPs. In this section we design a minimax way for merging them,
essentially following [19]. For the log-loss function the result is especially simple,
GM(p1)/(GM(1− p0) + GM(p1)).

Remark. Notice that the probability interval (1−GM(1 − p0),GM(p1)) (for-
mally, a pair of numbers) is narrower than the corresponding interval for the
arithmetic means; this follows from the fact that a geometric mean never exceeds
the corresponding arithmetic mean and that we always have p0 < p1.

Let us check that GM(p1)/(GM(1 − p0) + GM(p1)) is indeed the minimax
expression under log loss. Suppose the pairs of lower and upper probabilities to
be merged are (p10, p

1
1), . . . , (pK0 , p

K
1) and the merged probability is p. The extra

cumulative loss suffered by p over the correct members p11, . . . , p
K
1 of the pairs

when the true label is 1 is

log
p11
p

+ · · ·+ log
pK1
p
, (5)

and the extra cumulative loss of p over the correct members of the pairs when
the true label is 0 is

log
1− p10
1− p

+ · · ·+ log
1− pK0
1− p

. (6)

Equalizing the two expressions we obtain

p11 · · · pK1
pK

=
(1− p10) · · · (1− pK0)

(1− p)K
,

which gives the required minimax expression for the merged probability (since
(5) is decreasing and (6) is increasing in p).

In the case of the Brier loss function, we solve the linear equation

(1− p)2 − (1− p11)2 + · · ·+ (1− p)2 − (1− pK1)2 = p2 − (p10)2 + · · ·+ p2 − (pK0)2

in p; the result is

p =
1

K

K∑
k=1

(
pk1 +

1

2
(pk0)2 − 1

2
(pk1)2

)
.

11

This expression is more natural than it looks: see [19], the discussion after (11);
notice that it reduces to arithmetic mean when p0 = p1.

The argument above (“conditioned” on the proper training set) is also ap-
plicable to IVAP, in which case we need to set K := 1; the probability predictor
obtained from an IVAP by replacing (p0, p1) with p := p1/(1− p0 + p1) will be
referred to as the log-minimax IVAP. (And CVAP is log-minimax by definition.)

5 Comparison with other calibration methods

The two alternative calibration methods that we consider in this paper are
Platt’s [13] and isotonic regression [20].

5.1 Platt’s method

Platt’s [13] method uses sigmoids

g(s) :=
1

1 + exp(As+B)
,

where A < 0 and B are parameters, to calibrate the scores. Platt discusses two
approaches:

• run the scoring algorithm and fit the parameters A and B on the full
training set,

• or run the scoring algorithm on a subset (called the proper training set in
this paper) and fit A and B on the rest (the calibration set).

Platt recommends the second approach, especially that he is interested in SVM,
and for SVM the scores for the training set tend to cluster around ±1. (In fact,
this is also true for the calibration scores, as discussed below.)

Platt’s recommended method of fitting A and B is

−
k∑
i=1

(ti log pi + (1− ti) log(1− pi))→ min, (7)

where, in the simplest case, ti := yi are the labels of the calibration observations
(so that (7) minimizes the log loss on the calibration set). To obtain even better
results, Platt recommends regularization:

ti = t+ :=
k+ + 1

k+ + 2
(8)

for the calibration observations labelled 1 (if there are k+ of them) and

ti = t− :=
1

k− + 2
(9)

12

for the calibration observations labelled 0 (if there are k− of them). We can
see from (8) and (9) that the predictions of Platt’s predictor are always in the
range (

1

k− + 2
,
k+ + 1

k+ + 2

)
. (10)

Let us check that the predictions output by the log-minimax IVAP are in the
same range as those for Platt’s method (except that the end-points are now
allowed):

Lemma 3. In the case of IVAP, p1 ≥ 1/(k− + 1) and p0 ≤ 1 − 1/(k+ + 1),
where k− and k+ are the numbers of positive and negative observations in the
calibration set, respectively. In the case of log-minimax IVAP, p ∈ [1/(k− +
2), 1 − 1/(k+ + 2)] (i.e., p is in the closure of (10)). In the case of CVAP,
p ∈ [1/(k + 2), 1− 1/(k + 2)], where k is the size of the largest fold.

Proof. The statement about IVAP is obvious, and we will only check that it
implies the two other statements. For concreteness, we will consider the lower
bounds. The lower bound 1/(k− + 2) for log-minimax IVAP can be deduced
from p1 ≥ 1/(k− + 1) using the isotonicity of t/(c+ t) in t > 0 for c > 0:

p1
(1− p0) + p1

≥ 1/(k− + 1)

(1− p0) + 1/(k− + 1)
≥ 1/(k− + 1)

1 + 1/(k− + 1)
=

1

k− + 2
.

In the same way the lower bound 1/(k + 2) for CVAP follows from GM(p1) ≥
1/(k + 1):

GM(p1)

GM(1− p0) + GM(p1)
≥ 1/(k + 1)

GM(1− p0) + 1/(k + 1)
≥ 1/(k + 1)

1 + 1/(k + 1)
=

1

k + 2
.

It is clear that the end-points of the interval (10) can be approached arbi-
trarily closely in the case of Platt’s predictor and attained in the case of IVAPs.

The main disadvantage of Platt’s method is that the optimal calibration
curve g is quite often far from being a sigmoid; and if the training set is very
big, we will suffer, since in this case we can learn the best shape of the calibrator
g. This is particularly serious in asymptotics as the amount of data tends to
infinity.

Zhang [21] (Section 3.3) observes that in the case of SVM and universal [14]
kernels the scores tend to cluster around ±1 at “non-trivial” objects, i.e., objects
that are labelled 1 with non-trivial (not close to 0 or 1) probability. This means
that any sigmoid will be a poor calibrator unless the prediction problem is very
easy. Formally, we have the following statement (a trivial corollary of known
results), which uses the notation η(x) for the conditional probability that the
label of an object x ∈ X is 1 and assumes that the labels take values in {−1, 1},
yi ∈ {−1, 1} (rather than yi ∈ {0, 1}, as in the rest of this paper).

13

Proposition 3. Suppose that the probability of each of the events η(X) = 0,
η(X) = 1/2, and η(X) = 1 is 0. Let fm be the SVM for a training set of size
m, i.e., the solution to the optimization problem

Cm ‖f‖2H +

m∑
i=1

φ(f(xi)yi)→ min, (11)

where φ(v) := (1− v)+ and H is a universal RKHS ([15], Definition 4.52). As
m→∞,

fm(X)→ f(X) :=

{
−1 if η(X) ∈ [0, 1/2]

1 if η(X) ∈ (1/2, 1]

in probability provided Cm →∞ and Cm = o(m).

Proof. This follows immediately from Theorem 4.4 in [21] for a natural class
of universal kernels related to neural networks. In general, see the proof of
Theorem 8.1 in [15].

The intuition behind the SVM decision values clustering around ±1 is very
simple. SVM solves the optimization problem (11); asymptotically as m → ∞
and under natural assumptions (such as Cm →∞ and Cm = o(m)), this solves

Eφ(f(X)Y)→ min .

We can optimize separately for different values of η(x). Given η(x) = η∗, we
have the optimization problem

η∗φ(f) + (1− η∗)φ(−f)→ min,

whose solutions are

f(x) ∈

(−∞,−1] if η(x) = 0

{−1} if η(x) ∈ (0, 1/2)

[−1, 1] if η(x) = 1/2

{1} if η(x) ∈ (1/2, 1)

[1,∞) if η(x) = 1.

Assuming that the probability of each of the events η(X) = 0, η(X) = 1/2,
and η(X) = 1 is 0, it is easy to check that asymptotically the best achievable
excess log loss of a sigmoid over the Bayes algorithm is

E
(

KL (η || E(η | η > 1/2))1η>1/2 +KL (η || E(η | η < 1/2))1η<1/2

)
, (12)

where KL is Kullback–Leibler divergence defined in terms of base 2 logarithm
log2, and the conditional expectation E(η | E) is defined to be E(η 1E)/P(E).

On the other hand, there are no apparent obstacles to it approaching 0 in
the case of isotonic regression, considered in the next subsection.

14

For illustration, suppose η := η(X) is distributed uniformly in [0, 1]. It is
easy to see that

E(η | η > 1/2) = 3/4

E(η | η < 1/2) = 1/4;

therefore, the excess loss (12) is

E
(

KL (η || 3/4)1η>1/2 +KL (η || 1/4)1η<1/2

)
= E

(
η log2 η+(1−η) log2(1−η)

)
+ 2E

(
η1η>1/2 log2

4

3
+ η1η<1/2 log2 4

)
≈ −0.7213 + 0.8113 = 0.09.

We can see that the Bayes log loss is 72.13%, whereas the best loss achievable
by a sigmoid is 81.13%, 9 percentage points worse.

5.2 Isotonic regression

There are two standard uses of isotonic regression: we can train the scoring
algorithm using what we call a proper training set, and then use the scores of the
observations in a disjoint calibration (also called validation) set for calibrating
the scores of test objects (as in [3]); alternatively, we can train the scoring
algorithm on the full training set and also use the full training set for calibration
(it appears that this was done in [20]). In both cases, however, we can expect to
get an infinite log loss when the test set becomes large enough. Indeed, suppose
that we have fixed proper training and calibration sets (not necessarily disjoint,
so that both cases mentioned above are covered) such that the score s(X) of a
random object X is below the smallest score of the calibration objects with a
positive probability; suppose also that the distribution of the label of a random
observation is concentrated at 0 with probability zero. Under these realistic
assumptions the probability that the average log loss on the test set is ∞ can
be made arbitrarily close to one by making the size of the test set large enough:
indeed, with a high probability there will be an observation (x, y) in the test set
such that the score s(x) is below the smallest score of the calibration objects
but y = 1; the log loss on such an observation will be infinite.

The presence of regularization is an advantage of Platt’s method: e.g., it
never suffers an infinite loss when using the log loss function. There is no
standard method of regularization for isotonic regression, and we do not apply
one1.

1One of the reviewers of the conference version of this paper proposed complementing the
calibration set used in isotonic regression by two dummy observations: one with score +∞
and labelled by 0 and the other with score −∞ and labelled by 1.

15

6 Empirical studies

The main loss function (cf., e.g., [17]) that we use in our empirical studies is the
log loss

λlog(p, y) :=

{
− log p if y = 1

− log(1− p) if y = 0,
(13)

where log is binary logarithm, p ∈ [0, 1] is a probability prediction, and y ∈ {0, 1}
is the true label. Another popular loss function is the Brier loss

λBr(p, y) := 4(y − p)2. (14)

We choose the coefficient 4 in front of (y − p)2 in (14) and the base 2 of the
logarithm in (13) in order for the minimax no-information predictor that always
predicts p := 1/2 to suffer loss 1. An advantage of the Brier loss function is
that it still makes it possible to compare the quality of prediction in cases when
prediction algorithms (such as isotonic regression) give a categorical but wrong
prediction (and so are simply regarded as infinitely bad when using log loss).

The loss of a probability predictor on a test set will be measured by the
arithmetic average of the losses it suffers on the test set, namely, by the mean
log loss (MLL) and the mean Brier loss (MBL)

MLL :=
1

n

n∑
i=1

λlog(pi, yi), MBL :=
1

n

n∑
i=1

λBr(pi, yi), (15)

where yi are the test labels and pi are the probability predictions for them. We
will not be checking directly whether various calibration methods produce well-
calibrated predictions, since it is well known that lack of calibration increases the
loss as measured by loss functions such as log loss and Brier loss (see, e.g., [11]
for the most standard decomposition of the latter into the sum of the calibration
error and refinement error).

In this section we compare log-minimax IVAPs (i.e., IVAPs whose outputs
are replaced by probability predictions, as explained in Section 4) and CVAPs
with Platt’s method [13] and the standard method [20] based on isotonic re-
gression; the latter two will be referred to as “Platt” and “Isotonic” in our
tables and figures. (Even though for both IVAPs and CVAPs we use the log-
minimax procedure for merging multiprobability predictions, the Brier-minimax
procedure leads to virtually identical empirical results.) We use the same un-
derlying algorithms as in [19], namely J48 decision trees (abbreviated to “J48”),
J48 decision trees with bagging (“J48 bagging”), logistic regression (sometimes
abbreviated to “logistic”), naive Bayes, neural networks, and support vector
machines (SVM), as implemented in Weka [7] (University of Waikato, New Ze-
aland). The underlying algorithms (except for SVM) produce scores in the
interval [0, 1], which can be used directly as probability predictions (referred to
as “Underlying” in our tables and figures) or can be calibrated using the met-
hods of [13, 20] or the methods proposed in this paper (“IVAP” or “CVAP” in
the tables and figures).

16

We start our empirical studies with the adult data set available from the UCI
repository [5] (this is the main data set used in [13] and one of the data sets used
in [20]); however, as we will see later, the picture that we observe is typical for
other data sets as well. We use the original split of the data set into a training set
of Ntrain = 32, 561 observations and a test set of Ntest = 16, 281 observations.
The results of applying the four calibration methods (plus the vacuous one,
corresponding to just using the underlying algorithm) to the six underlying
algorithms for this data set are shown in Figure 1. The six top plots report
results for the log loss (namely, MLL, as defined in (15)) and the six bottom
plots for the Brier loss (namely, MBL). The underlying algorithms are given in
the titles of the plots and the calibration methods are represented by different
line styles, as explained in the legends. The marks on the horizontal axis are
the ratios of the size of the proper training set to the size of the calibration set
(except for the label all, which will be explained later); in the case of CVAPs,
the number K of folds can be expressed as the sum of the two numbers forming
the ratio (therefore, column 4:1 corresponds to the standard choice of 5 folds in
the method of cross-validation). Missing curves or points on curves mean that
the corresponding values either are too big and would squeeze unacceptably the
interesting parts of the plot if shown or are infinite (such as many results for
isotonic regression and neural networks under log loss). In the case of CVAPs,
the training set is split into K equal (or as close to being equal as possible)
contiguous folds: the first dNtrain/Ke training observations are included in the
first fold, the next dNtrain/Ke (or bNtrain/Kc) in the second fold, etc. (first d·e
and then b·c is used unless Ntrain is divisible by K). In the case of the other
calibration methods, we used the first dK−1K Ntraine training observation as the
proper training set (used for training the scoring algorithm) and the rest of the
training observations are used as the calibration set.

In the case of log loss, isotonic regression often suffers infinite losses, which
is indicated by the absence of the round marker for isotonic regression; e.g.,
only one of the log losses for SVM is finite. We are not trying to use ad hoc
solutions, such as clipping predictions to the interval [ε, 1− ε] for a small ε > 0,
since we are also using the bounded Brier loss function. The CVAP lines tend
to be at the bottom in all plots; experiments with other data sets also confirm
this.

The column all in the plots of Figure 1 refers to using the full training set
as both the proper training set and calibration set. (In our official definition of
IVAP we require that the last two sets be disjoint, but in this section we continue
to refer to IVAPs modified in this way simply as IVAPs; in [19], such prediction
algorithms were referred to as SVAPs, simplified Venn–Abers predictors.) Using
the full training set as both the proper training set and calibration set might
appear naive (and is never used in the extensive empirical study [3]), but it
often leads to good empirical results on larger data sets. However, it can also
lead to very poor results, as in the case of “J48 bagging” (for IVAP, Platt,
and Isotonic), the underlying algorithm that achieves the best performance in
Figure 1.

A natural question is whether CVAPs perform better than the alternative

17

1 2 3 4 all
0.490

0.495

0.500

0.505
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.486

0.488

0.490

0.492

0.494

0.496
logistic regression

Underlying
Isotonic
IVAP
CVAP

1 2 3 4 all
0.452

0.454

0.456

0.458

0.460
naive Bayes

Isotonic
IVAP
CVAP

1 2 3 4 all
0.440

0.460

0.480

0.500

0.520

0.540
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.420

0.440

0.460

0.480
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.440

0.450

0.460

0.470

0.480
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.430

0.432

0.434

0.436

0.438
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.4285

0.4290

0.4295

0.4300

0.4305

0.4310
logistic regression

Underlying
Isotonic
IVAP
CVAP

1 2 3 4 all
0.400

0.420

0.440

0.460
naive Bayes

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.380

0.390

0.400

0.410

0.420

0.430
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.360

0.370

0.380

0.390

0.400
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all
0.390

0.400

0.410

0.420
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

Figure 1: The log and Brier losses of the four calibration methods applied to
the six prediction algorithms on the adult data set.

18

Table 1: The log loss for the four calibration methods and six underlying algo-
rithms for a small subset of the adult data set

algorithm Platt IR IVAP CVAP
J48 0.5226 ∞ 0.5117 0.5102

J48 bagging 0.4949 ∞ 0.4733 0.4602
logistic 0.5111 ∞ 0.4981 0.4948

naive Bayes 0.5534 ∞ 0.4839 0.4747
neural networks 0.5175 ∞ 0.5023 0.4805

SVM 0.5221 ∞ 0.5015 0.4997

Table 2: The analogue of Table 1 for the Brier loss

algorithm Platt IR IVAP CVAP
J48 0.4463 0.4378 0.4370 0.4368

J48 bagging 0.4225 0.4153 0.4123 0.3990
logistic 0.4470 0.4417 0.4377 0.4342

naive Bayes 0.4670 0.4329 0.4311 0.4227
neural networks 0.4525 0.4574 0.4440 0.4234

SVM 0.4550 0.4450 0.4408 0.4375

calibration methods in Figure 1 (and our other experiments) because of applying
cross-over (in moving from IVAP to CVAP) or because of the extra regulari-
zation used in IVAPs. The first reason is undoubtedly important for both loss
functions and the second for the log loss function. The second reason plays
a smaller role for Brier loss for relatively large data sets (in the lower half of
Figure 1 the curves for Isotonic and IVAP are very close to each other), but
IVAPs are consistently better for smaller data sets even when using Brier loss.
In Tables 1 and 2 we apply the four calibration methods and six underlying algo-
rithms to a much smaller training set, namely to the first 5, 000 observations of
the adult data set as the new training set, following [3]; the first 4, 000 training
observations are used as the proper training set, the following 1, 000 training
observations as the calibration set, and all other observations (the remaining
training and all test observations) are used as the new test set. The results are
shown in Tables 1 for log loss and 2 for Brier loss. They are consistently better
for IVAP than for IR (isotonic regression). Results for nine very small data sets
are given in Tables 1 and 2 of [19], where the results for IVAP (with the full
training set used as both proper training and calibration sets, labelled “SVA”
in the tables in [19]) are consistently (in 52 cases out of the 54 using Brier loss)
better, usually significantly better, than for isotonic regression (referred to as
DIR in the tables in [19]).

The following information might help the reader in reproducing our results

19

(in addition to our code being posted on arXiv together with this paper). For
each of the standard prediction algorithms within Weka that we use, we optimise
the parameters by minimising the Brier loss on the calibration set, apart from
the column labelled all. (We cannot use the log loss since it is often infinite in
the case of isotonic regression.) We then use the trained algorithm to generate
the scores for the calibration and test sets, which allows us to compute proba-
bility predictions using Platt’s method, isotonic regression, IVAP, and CVAP.
All the scores apart from SVM are already in the [0, 1] range and can be used
as probability predictions. Most of the parameters are set to their default va-
lues, and the only parameters that are optimised are C (pruning confidence) for
J48 and J48 bagging, R (ridge) for logistic regression, L (learning rate) and M

(momentum) for neural networks (MultilayerPerceptron), and C (complexity
constant) for SVM (SMO, with the linear kernel); naive Bayes does not involve
any parameters. Notice that none of these parameters are “hyperparameters”,
in that they do not control the flexibility of the fitted prediction rule directly;
this allows us to optimize the parameters on the training set for the all column.
In the case of CVAPs, we optimise the parameters by minimising the cumulative
Brier loss over all folds (so that the same parameters are used for all folds). To
apply Platt’s method to calibrate the scores generated by the underlying algo-
rithms we use logistic regression, namely the function mnrfit within MATLAB’s
Statistics toolbox. For isotonic regression calibration we use the implementa-
tion of the PAVA in the R package fdrtool (namely, the function monoreg).
Missing values are handled using the Weka filter ReplaceMissingValues, which
replaces all missing values for nominal and numeric attributes with the modes
and means from the training set.

Additional experimental results

Figure 2 shows our results for the covertype data set (available from the UCI
repository [5] and also known as forest). In converting this multiclass classifi-
cation problem to binary we follow [3]: treat the largest class as 1 and the rest
as 0, and only consider a random and randomly permuted subset consisting of
30, 000 observations; the first 5000 of those observations are used as the training
set and the remaining 25, 000 as the test set. The CVAP results are still at the
bottom of the plots and very stable; and the values at the all column are still
particularly unstable.

Similar results for the insurance, Bank Marketing, Spambase, and Statlog

German Credit Data data sets are shown in Figures 3, 4, 5, and 6, respectively.
The data sets are split into training and test sets in proportion 2:1, without
randomization. Since the values for the all column are so unstable, the reader
might prefer to disregard them in the case of IVAP, Platt, and Isotonic. In
Figures 3, 4, and 5 the CVAP results tend to be at the bottom of the plots. The
Statlog German Credit Data data set is much more difficult, and all results
in Figure 6 are poor and somewhat mixed; however, they still demonstrate that
CVAPs and IVAPs produce stable results and avoid the occasional bad failures
characteristic of the alternative calibration methods.

20

1 2 3 4 all
0.750

0.760

0.770

0.780
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.740

0.760

0.780

0.800
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.750

0.755

0.760

0.765

0.770

0.775
naive Bayes

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.700

0.750

0.800

0.850

0.900
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.650

0.700

0.750

0.800
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.600

0.700

0.800

0.900

1.000
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.680

0.685

0.690

0.695

0.700

0.705
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.680

0.685

0.690

0.695

0.700

0.705
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.680

0.700

0.720

0.740

0.760
naive Bayes

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.650

0.700

0.750

0.800
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.580

0.600

0.620

0.640
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all
0.550

0.600

0.650

0.700

0.750

0.800
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Figure 2: The analogue of Figure 1 for the covertype data set.

21

1 2 3 4 all
0.320

0.330

0.340

0.350
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.310

0.315

0.320

0.325

0.330
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.335

0.336

0.337

0.338

0.339
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.300

0.320

0.340

0.360

0.380

0.400
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.300

0.320

0.340

0.360

0.380

0.400

neural networks

Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.305

0.310

0.315

0.320

0.325
naive Bayes

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.225

0.230

0.235

0.240
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.2200

0.2250

0.2300

0.2350
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.232

0.233

0.234

0.235
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.220

0.230

0.240

0.250

0.260

0.270
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all
0.220

0.240

0.260

0.280

0.300

0.320
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.216

0.218

0.220

0.222
naive Bayes

Platt
Isotonic
IVAP
CVAP

Figure 3: The analogue of Figure 1 for the insurance data set.

22

1 2 3 4 all
0.370

0.380

0.390

0.400

0.410
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.360

0.370

0.380

0.390

0.400

0.410
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.360

0.380

0.400

0.420

0.440

0.460
naive Bayes

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.400

0.420

0.440

0.460

0.480

0.500
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.350

0.400

0.450
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.200

0.400

0.600

0.800
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.300

0.310

0.320

0.330
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.3000

0.3100

0.3200

0.3300
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.320

0.340

0.360

0.380

0.400
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.290

0.300

0.310

0.320

0.330

0.340
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all

0.350

0.400

0.450

0.500
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.310

0.320

0.330

0.340

0.350
naive Bayes

Platt
Isotonic
IVAP
CVAP

Figure 4: The analogue of Figure 1 for the Bank Marketing data set.

23

1 2 3 4 all
0.260

0.270

0.280

0.290

0.300
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.260

0.280

0.300

0.320

0.340

0.360
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.250

0.300

0.350

0.400

0.450
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.240

0.260

0.280

0.300

0.320

0.340
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.200

0.250

0.300

0.350

0.400

0.450
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.200

0.300

0.400

0.500

0.600

0.700
naive Bayes

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.200

0.210

0.220

0.230
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.2050

0.2100

0.2150

0.2200

0.2250

0.2300
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.200

0.250

0.300

0.350

0.400
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.190

0.200

0.210

0.220

0.230

0.240
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all
0.180

0.200

0.220

0.240

0.260

0.280
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Student Version of MATLAB

1 2 3 4 all
0.200

0.300

0.400

0.500

0.600

0.700
naive Bayes

Platt
Isotonic
IVAP
CVAP

Figure 5: The analogue of Figure 1 for the Spambase data set.

24

1 2 3 4 all

0.650

0.700

0.750

0.800
SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.640

0.660

0.680

0.700

0.720

0.740
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.700

0.800

0.900

1.000
naive Bayes

Underlying
Isotonic
IVAP
CVAP

1 2 3 4 all
0.700

0.800

0.900

1.000
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.700

0.800

0.900

1.000
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Log Loss

1 2 3 4 all
0.700

0.800

0.900

1.000
neural networks

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.550

0.600

0.650

0.700

0.750

SVM

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.5800

0.6000

0.6200

0.6400

0.6600
logistic regression

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.650

0.700

0.750
naive Bayes

Platt
Isotonic
IVAP
CVAP

1 2 3 4 all
0.650

0.700

0.750

0.800

0.850

0.900
J48

Underlying
Platt
Isotonic
IVAP
CVAP

1 2 3 4 all

0.650

0.700

0.750

0.800
J48 bagging

Underlying
Platt
Isotonic
IVAP
CVAP

Brier Loss

1 2 3 4 all
0.600

0.700

0.800

0.900

1.000
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Figure 6: The analogue of Figure 1 for the data set Statlog German Credit

Data.

25

And finally, Figure 7 shows the results for log loss and Brier loss for the
adult data set and for a wide range of the ratios of the size of the proper
training set to the calibration set. The left-most column of each plot is 1 : 9,
which means, in the case of Platt’s method, isotonic regression, and IVAPs, that
10% of the training set was allocated to the proper training set and the rest to the
calibration set. In the case of CVAPs, 1 : 9 means that the training set was split
into 10 folds, each of them in turn was used as the proper training set, and the
rest were used as the calibration set; the results were merged using the minimax
procedure as described in Section 4. In the case of the underlying algorithm,
1 : 9 means that only 10% of the training set was in fact used for training (the
same 10% as for the first three calibration methods). The other columns are
1 : 8, 1 : 7,. . . , 1 : 2, 1 : 1 (which corresponds to 1 : 1 in Figure 1),. . . , 4 : 1
(which corresponds to 4 : 1 in Figure 1, i.e., to the standard procedure of 5-fold
cross-validation), 5 : 1,. . . , 9 : 1 (the latter corresponds to the other standard
cross-validation procedure, that of 10-fold cross-validation); the results in those
columns are analogous to those in the column 1 : 9. In order not to duplicate
the information we gave earlier for the adult data set, we give the results for a
randomly permuted adult data set. There is not much difference between 5 and
10 folds for most underlying algorithms (logistic regression behaves unusually in
that its performance deteriorates as the size of the proper training set increases,
perhaps because less data are available for calibration).

7 Conclusion

This paper introduces two new computationally efficient algorithms for proba-
bilistic prediction, IVAP, which can be regarded as a regularised form of the
calibration method based on isotonic regression, and CVAP, which is built on
top of IVAP using the idea of cross-validation. Whereas IVAPs are automati-
cally perfectly calibrated, the advantage of CVAPs is in their good empirical
performance.

This paper does not study empirically upper and lower probabilities pro-
duced by IVAPs and CVAPs, whereas the distance between them provides in-
formation about the reliability of the merged probability prediction. Finding
interesting ways of using this extra information is one of the directions of further
research.

Acknowledgments

We are grateful to the conference reviewers for numerous helpful comments and
observations, to Vladimir Vapnik for sharing his ideas about exploiting synergy
between different learning algorithms, and to participants in the conference
Machine Learning: Prospects and Applications (October 2015, Berlin) for their
questions and comments. The first author has been partially supported by
EPSRC (grant EP/K033344/1) and AFOSR (grant “Semantic Completions”).
The second and third authors are grateful to their home institutions for funding

26

1:10 1:5 1:1 5:1 all
0.490

0.500

0.510

0.520

0.530

0.540

0.550

SVM

Underlying

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.494

0.496

0.498

0.5

0.502

0.504

0.506
logistic

Underlying

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.455

0.460

0.465

0.470

0.475

0.480

0.485
naive Bayes

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.460

0.480

0.500

0.520

0.540

0.560

0.580
J48

Platt

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.400

0.420

0.440

0.460

0.480

0.500

0.520
J48 bagging

Underlying

Platt

Isotonic

IVAP

CVAP

Adult: log loss

1:10 1:5 1:1 5:1 all
0.45

0.5

0.55

0.6

0.65
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

0.560

1:10 1:5 1:1 5:1 all
0.440

0.445

0.450

0.455

0.460

0.465

0.470
SVM

Platt

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.436

0.438

0.440

0.442

0.444
logistic

Underlying

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.410

0.415

0.420

0.425

0.430

0.435
naive Bayes

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.380

0.400

0.420

0.440

0.460

0.480
J48

Underlying

Platt

Isotonic

IVAP

CVAP

1:10 1:5 1:1 5:1 all
0.340

0.360

0.380

0.400

0.420

0.440

0.460
J48 bagging

Underlying

Platt

Isotonic

IVAP

CVAP

Adult: Brier loss

1:10 1:5 1:1 5:1 all
0.380

0.400

0.420

0.440

0.460

0.480

0.500
neural networks

Underlying
Platt
Isotonic
IVAP
CVAP

Figure 7: The log and Brier losses on the adult data set of the six prediction
algorithms and four calibration methods

27

their trips to Montréal to attend NIPS 2015.

References

[1] Miriam Ayer, H. Daniel Brunk, George M. Ewing, W. T. Reid, and Edward
Silverman. An empirical distribution function for sampling with incomplete
information. Annals of Mathematical Statistics, 26:641–647, 1955.

[2] Richard E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. Daniel
Brunk. Statistical Inference under Order Restrictions: The Theory and
Application of Isotonic Regression. Wiley, London, 1972.

[3] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison
of supervised learning algorithms. In Proceedings of the Twenty Third In-
ternational Conference on Machine Learning, pages 161–168, New York,
2006. ACM.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, third edi-
tion, 2009.

[5] A. Frank and A. Asuncion. UCI machine learning repository, 2015.

[6] Ronald L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Information Processing Letters, 1:132–133, 1972.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reu-
temann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11:10–18, 2011.

[8] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado.
Smooth isotonic regression: a new method to calibrate predictive models.
AMIA Summits on Translational Science Proceedings, 2011:16–20, 2011.

[9] Antonis Lambrou, Harris Papadopoulos, Ilia Nouretdinov, and Alex Gam-
merman. Reliable probability estimates based on support vector machines
for large multiclass datasets. In Lazaros Iliadis, Ilias Maglogiannis, Harris
Papadopoulos, Kostas Karatzas, and Spyros Sioutas, editors, Proceedings
of the AIAI 2012 Workshop on Conformal Prediction and its Applications,
volume 382 of IFIP Advances in Information and Communication Techno-
logy, pages 182–191, Berlin, 2012. Springer.

[10] Chu-In Charles Lee. The Min-Max algorithm and isotonic regression. An-
nals of Statistics, 11:467–477, 1983.

[11] Allan H. Murphy. A new vector partition of the probability score. Journal
of Applied Meteorology, 12:595–600, 1973.

28

[12] Gordon D. Murray. Nonconvergence of the minimax order algorithm. Bi-
ometrika, 70:490–491, 1983.

[13] John C. Platt. Probabilities for SV machines. In Alexander J. Smola,
Peter L. Bartlett, Bernhard Schölkopf, and Dale Schuurmans, editors, Ad-
vances in Large Margin Classifiers, pages 61–74. MIT Press, 2000.

[14] Ingo Steinwart. On the influence of the kernel on the consistency of support
vector machines. Journal of Machine Learning Research, 2:67–93, 2001.

[15] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Sprin-
ger, New York, 2008.

[16] Vladimir N. Vapnik. Intelligent learning: Similarity control and knowledge
transfer. Talk at the 2015 Yandex School of Data Analysis Conference
Machine Learning: Prospects and Applications, 6 October 2015, Berlin.

[17] Vladimir Vovk. The fundamental nature of the log loss function. In Lev D.
Beklemishev, Andreas Blass, Nachum Dershowitz, Berndt Finkbeiner, and
Wolfram Schulte, editors, Fields of Logic and Computation II: Essays De-
dicated to Yuri Gurevich on the Occasion of His 75th Birthday, volume
9300 of Lecture Notes in Computer Science, pages 307–318, Cham, 2015.
Springer.

[18] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning
in a Random World. Springer, New York, 2005.

[19] Vladimir Vovk and Ivan Petej. Venn–Abers predictors, On-line Compres-
sion Modelling project (New Series), http://alrw.net, Working Paper 7,
June 2014 (first posted October 2012).

[20] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability es-
timates from decision trees and naive Bayesian classifiers. In Carla E.
Brodley and Andrea P. Danyluk, editors, Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML 2001), pages 609–616,
San Francisco, CA, 2001. Morgan Kaufmann.

[21] Tong Zhang. Statistical behavior and consistency of classification methods
based on convex risk minimization. Annals of Statistics, 32:56–85, 2004.

29

