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Abstract

The first part of this paper is another English translation of [17]. It gives a
natural definition of a finite Bernoulli sequence (i.e., a typical realization of
a finite sequence of binary IID trials) and compares it with the Kolmogorov–
Martin-Löf definition, which is interpreted as defining exchangeable sequences.
The appendix gives the historical background and proofs.
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On the concept of Bernoulliness

This note gives a definition of a “Bernoulli sequence”, i.e., a finite sequence
of 0s and 1s that is random with respect to the class of Bernoulli measures.
Our definition is different from A. N. Kolmogorov’s [1] and more similar to the
definition in [2]; for terminological convenience, sequences random in the sense
of [1] will be called collectives.

1. Denote byX the union of the following sets: 2∗, the set of all finite sequences
of 0s and 1s, N∗, the set of all finite sequences of natural numbers, N , the set
of all natural numbers, and F(N), the set of all finite subsets of the set N (a
finite subset of N is identified with the list of its elements in increasing order).
The set X defined in this way contains all objects that we will need.

A description method is a partial function B : 2∗ × X → X that has an
algorithm computing its values (the reader not familiar with the theory of al-
gorithms can safely rely on his intuitive idea of computability). The length of
a shortest p such that B(p, y) = x will be denoted KB(x | y) and called the
complexity of x given y under the description method B.

Lemma 1. There exists a description method A(p, y) such that, for any de-
scription method B(p, y),

KA(x | y) ≤ KB(x | y) + C,

where C is a constant that does not depend on x and y.

A description method is prefix if, for any p ∈ 2∗ and p′ ∈ 2∗ such that p is
a prefix of p′, B(p, y) = B(p′, y) for all y ∈ X. Lemma 1 will remain true if
“description method” is replaced by “prefix description method”.

Let us fix a description method A satisfying Lemma 1; KA(x | y) will be
denoted K(x | y) and called the complexity of x given y. The prefix complexity
KP(x | Y ) of x given y is defined similarly. Proofs of the assertions made above
can be found in [3].

2. Denote by 2(n) the set of all sequences in 2∗ of length n. Let p ∈ [0, 1]
and n > 0 be an integer. On the set 2(n) define the Bernoulli measure with
parameters (n, p) as follows: for any x ∈ 2(n) set P{x} = pk(1−p)n−k, where k is
the number of 1s in x. On the set {0, 1, . . . , n} define the binomial measure with
parameters (n, p) by the equality P{k} =

(
n
k

)
pk(1−p)n−k for all k = 0, 1, . . . , n.

With each Bernoulli (binomial) measure P with parameters (n, p) associate
an integer-valued function T (x | P ) of the variable x ∈ 2(n) (in the case of a
binomial measure, x ∈ {0, 1, . . . , n}) so that:

(1) E2T (x|P ) ≤ 1, where E stands for the mean under the measure P .

(2) As function of x and P , the function T is lower semicomputable. This
means that there exists an algorithm A such that: given n, x, and an
“oracle” that for each i ∈ N outputs a rational number ai satisfying
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|ai − p| ≤ 2−i (of course, the sequence ai does not have to be computable),
A enumerates a nondecreasing sequence of integer numbers mj such that
supj mj = T (x | P ); it is required that A should work correctly for an
arbitrary “oracle” (for oracular computability, see [4]).

Such functions T will be called tests (for randomness). A condition similar to
(1) first appeared in [5].

Lemma 2. There exists a test D(x | P ) such that, for any test T (x | P ),

D(x | P ) ≥ T (x | P )− C,

where C does not depend on x and P .

The test D(x | P ) in Lemma 2 will be called the randomness deficiency of
x with respect to the measure P .

3. The Bernoulliness deficiency DBernoul(x) of a sequence x ∈ 2(n) is defined to
be infD(x | P ), where the inf is over the Bernoulli measures with parameters
(n, p) for all p ∈ [0, 1]. Similarly, for a number k in {0, 1, . . . , n} define the
binomiality deficiency Dbinom

n (k) as infD(k | P ); here the inf is over the binomial
measures. A sequence in 2∗ is called Bernoulli if its Bernoulliness deficiency is
small. We speak of a binomial number in a similar sense.

Theorem 1. If x ∈ 2(n) contains k 1s, then

DBernoul(x)−
[
log2

(
n

k

)
−KP(x | n, k,Dbinom

n (k))

]
= Dbinom

n (k) +O(1). (1)

According to [1], the x in (1) is a collective if log2
(
n
k

)
−K(x | n, k) is small

(intuitively, this means that the complexity of x in the class of sequences in 2(n)

containing k 1s is close to maximal). The expression in square brackets in (1) is
completely analogous to log2

(
n
k

)
−K(x | n, k), except for the term Dbinom

n (k).
We can get rid of it at the expense of a certain loss of sharpness.

Corollary. For a fixed ϵ > 0,

Dbinom
n (k)−O(1) ≤ DBernoul(x)−

[
log2

(
n

k

)
−KP(x | n, k)

]
≤ (1 + ϵ)Dbinom

n (k) +O(1).

The word “fixed” in the statement of the corollary means that |O(1)| is
bounded by a value that depends on ϵ. The quantities log2

(
n
k

)
− KP(x | n, k)

and log2
(
n
k

)
−K(x | n, k) differ by at most

2 log2

(∣∣∣∣log2 (nk
)
−K(x | n, k)

∣∣∣∣+ 1

)
+O(1)

(we refer to this as coincidence to within 2 log).
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Therefore, our definition of Bernoulliness adds to the requirement of nearly
maximal complexity of x in the class of sequences in 2∗ with the same length
and the same number of 1s as x the requirement of binomiality of the number of
1s. It turns out that binomiality deficiency can be characterized in complexity-
theoretic terms; this gives a complexity-theoretic characterization of Bernoulli
sequences.

If A is a partition (of a set into disjoint subsets), A(k) denotes the element
of the partition containing k.

Theorem 2. Let n > 0 be an integer. Set

ks =
n

2

(
1− cos

s√
n

)
for s = 0, 1, . . . , ⌊π

√
n⌋, (2)

where ⌊·⌋ is integer part. Denote by A the partition of the set {0, 1, . . . , n}
into the subsets [ks, ks+1), where s = 0, 1, . . . , ⌊π

√
n⌋ (for s = ⌊π

√
n⌋ we set

ks+1 = +∞). If k ∈ {0, 1, . . . , n},

Dbinom
n (k) = log2 |A(k)| −KP(k | n,A(k)) +O(1). (3)

The right-hand side of (3) coincides with log2 |A(k)| − K(k | n,A(k)) to
within 2 log. Notice the following properties of the partition A. The sets {0}
and {n} are in A. If k ̸= 0 and k ̸= n,

|A(k)| =
√

k(n− k)

n
· 2O(1).

It is easy to see that √
k(n− k)

n
=

√
n
k

n

(
1− k

n

)
is an estimate of the standard deviation of the number of 1s.

The author is deeply grateful to his supervisor A. N. Kolmogorov for valuable
discussions. V. V. V’yugin’s and A. K. Zvonkin’s comments contributed to the
improvement of this note, and the author expresses his sincere gratitude to
them.

References

[1] Andrei N. Kolmogorov. Logical basis for information theory and probabil-
ity theory. IEEE Transactions of Information Theory, IT-14:662–664, 1968.
Russian original: Ê ëîãè÷åñêèì îñíîâàì òåîðèè èíôîðìàöèè è òåîðèè
âåðîÿòíîñòåé (published in 1969 in Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè).

[2] Leonid A. Levin. On the notion of a random sequence. Soviet Mathematics
Doklady, 14:1413–1416, 1973. Russian original: Ë. À. Ëåâèí. Î ïîíÿòèè
ñëó÷àéíîñòè. Äîêëàäû ÀÍ ÑÑÑÐ 212(1):548–550, 1973.

3



[3] Vladimir V. V’yugin. Algorithmic entropy (complexity) of finite ob-
jects and its applications to defining randomness and amount of infor-
mation. Selecta Mathematica Sovietica, 13:357–389, 1994. Russian origi-
nal: Â. Â. Âüþãèí. Àëãîðèòìè÷åñêàÿ ýíòðîïèÿ (ñëîæíîñòü) êîíå÷íûõ
îáúåêòîâ è åå ïðèìåíåíèå ê îïðåäåëåíèþ ñëó÷àéíîñòè è êîëè÷åñòâà
èíôîðìàöèè. Ñåìèîòèêà è èíôîðìàòèêà 16:14–43, 1981.

[4] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computabil-
ity. McGraw-Hill, New York, 1967.

[5] Leonid A. Levin. Uniform tests of randomness. Soviet Mathematics Dok-
lady, 17:337–340, 1976. Russian original: Ë. À. Ëåâèí. Ðàâíîìåðíûå òåñòû
ñëó÷àéíîñòè. Äîêëàäû ÀÍ ÑÑÑÐ 227(1):33–35, 1976.

Scientific Council for Cybernetics Received by the Board of Governors
Academy of Sciences of the USSR on 6 April 1984

4



A Historical background

Kolmogorov’s definition of Bernoulliness was part of his project of creating new
mathematical foundations for applications of probability. By that time, the
measure-theoretic foundations for the theory of probability clearly articulated
in his Grundbegriffe [8] had been accepted by the community of researchers
working in mathematical probability and statistics (see, e.g., [15]; an important
role in the acceptance belonged to Doob’s 1953 book [7]). In his approach
to the foundations of applications of probability, Kolmogorov followed Richard
von Mises (referring to [14] in Section I.2 of [8]). Richard von Mises suggested
frequentist foundations based on the notion of a collective; his original definition
was not rigorous, but two different formalizations were suggested by Abraham
Wald [20] and Alonzo Church [6]. Collectives are often regarded as the first
attempt to define the notion of a random sequence (roughly, a sequence that
is a typical realization of a sequence of independent and identically distributed
trials).

Kolmogorov regarded collectives as important only for foundations of ap-
plications of probability. He believed that there was no need to change the
existing foundations of the theory of probability based on Kolmogorov’s [8] ax-
ioms: “there is no need whatsoever to change the established construction of the
mathematical probability theory on the basis on the general theory of measure”
([11], Section 6).

Kolmogorov’s first attempt to bring von Mises’s infinitary notion of collec-
tives closer to the needs of practice was his 1963 paper [9]. After introducing his
algorithmic notion of complexity in 1965 [10], Kolmogorov used it in [1] to define
a finitary notion of a binary collective that was in some sense universal (being
based on a universal notion of algorithmic complexity) and so immune to known
examples showing the inadequacy of collectives as formalization of random se-
quences (such as Ville’s [16] demonstration that collectives do not necessarily
satisfy the conclusion of the law of the iterated logarithm). The same definition
was published earlier by Per Martin-Löf ([13], Section V), Kolmogorov’s PhD
student.

Kolmogorov and Martin-Löf used the term “Bernoulli sequences” for their
formalization of random sequences, since they considered only the case of binary
random sequences, where the goal is to formalize typical realizations of repeated
independent Bernoulli trials. (Kolmogorov was very much against what he
regarded as premature generalizations and insisted that the simple binary case
should be understood first.)

Two important features of Kolmogorov’s approach to foundations of appli-
cations of probability were its finitary character (“we do not often see infinite
sequences around us, do we?”) and avoiding probability measures when defining
random sequences. (Perhaps probability measures were to reappear at a later
stage as frequencies in random sequences, as in von Mises’s writings.) However,
his PhD students, first of all Per Martin-Löf [13] and Leonid Levin [2, 5], were
quick to bring into Kolmogorov’s theory both aspects that Kolmogorov himself
avoided (infinite sequences and probability measures). In terms of probability
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measures, Kolmogorov’s preferred notion of randomness could be expressed as
randomness with respect to uniform probability measures on finite sets.

B This note

Note [17] defined Bernoulliness as randomness with respect to the class of
Bernoulli measures and compared the resulting notion with that of Kolmogorov
[1] and Martin-Löf [13]. The latter was identified with the randomness with
respect to the exchangeable distributions (4) (without mentioning them explic-
itly). The first main result (Theorem 1) of [17] was that the Bernoulliness
deficiency decomposes into the sum of the exchangeability deficiency and the
binomiality deficiency of the number of 1s, where the binomiality deficiency is
defined to be the randomness with respect to the class of binomial measures.
The second main result (Theorem 2) expressed the binomiality deficiency of a
number k in Kolmogorov’s preferred terms, as the randomness deficiency of k
with respect to the uniform probability measure on a certain neighbourhood
of k. Therefore, the new notion of Bernoulliness as a whole was expressed in
Kolmogorov’s preferred terms.

Note [17] was published in a Russian journal routinely translated into English
cover-to-cover. The current translation uses the one in [17] but follows the
Russian original somewhat less closely. In particular, it sets the terms being
defined (such as “description method”, “complexity”, etc.) in italics.

C Proofs

The proofs of Theorems 1 and 2 in [17] have never been published, but they are
not difficult to extract from the existing publications, such as [19] (Theorem 1)
and [18] (Lemmas 1–3). This section will spell them out.

Proof of Theorem 1

Let us set, for x ∈ 2(n) and y ∈ X,

Dexch(x | y) := log2

(
n

k

)
−KP(x | n, k, y), (4)

where k is the number of 1s in x. This is the exchangeability deficiency of x
(the randomness deficiency infP D(x | P ; y) with respect to all exchangeable
distributions P on 2(n), conditioned on knowing y). In terms of Dexch, our goal
(1) can be rewritten as

DBernoul(x) = Dexch(x | Dbinom
n (k)) + Dbinom

n (k) +O(1). (5)

According to Theorem 1 in [19], we have

D(x | Bn,p) = D(k | binn,p) +D(x | 2nk ;D(k | binn,p)) +O(1) (6)
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where Bn,p is the Bernoulli measure with parameters (n, p), binn,p is the bino-
mial measure with parameters (n, p), k is the number of 1s in x, 2nk is the set of
all sequences in 2(n) with k 1s (identified with the uniform probability measure
on this set), and D(x | 2nk ;D(k | binn,p)) stands for the randomness deficiency
of x in 2nk conditioned on knowing D(k | binn,p). (Namely, (6) is obtained from
the equation in Theorem 1 in [19] by applying log to both sides; this is needed
since the exposition in [19] is in terms of “level of impossibility” 2−D, where D
is randomness deficiency.)

Roughly, (5) corresponds to minimizing both sides of (6) over p ∈ [0, 1]; this
works because of the following theorem (which is a version of Theorem 2 in
[18]).

Theorem 3. There exists a computable point estimator E : 2∗ → [0, 1] such
that

DBernoul(x) = D(x | Bn,E(x)) +O(1) (7)

and
Dbinom

n (k) = D(k | binn,E(x)) +O(1), (8)

where x ranges over 2∗, n is the length of x, and k is the number of 1s in x.

An estimator E satisfying the conditions in Theorem 3 is described at the
beginning of Subsection 4.1 of [18]; it depends on x only via n and k and is
sometimes denoted En(k). To define E we can, essentially, fix an element of
each A(k)/n (in a computable manner), and set En(k) to the fixed element
of A(k)/n. For agreement with [18], let us replace the partition (2) by the
equivalent partition (cf. the identity 1 − cos(2α) = 2 sin2 α and Lemma 1 in
[18])

θa = n sin2
a√
n

for a = 0, 1, . . . , ⌊π
√
n/2⌋.

It will be convenient (as in [18]) to allow a to be any number in the interval
[0, π

√
n/2].

Theorem 3 and (6) immediately imply (5):

Dexch(x | Dbinom
n (k)) + Dbinom

n (k)

= D(x | 2nk ;D(k | binn,E(x))) +D(k | binn,E(x)) +O(1)

= D(x | Bn,E(x)) +O(1) = DBernoul(x) +O(1).

Proof of Theorem 3. Let us check (7); the proof of (8) is similar. We are re-
quired to prove

D(x | Bn,p) ≥ D(x | Bn,E(x))−O(1).

We will do this separately for the cases |a− â(x)| < 1 and |a− â(x)| ≥ 1, where
a is defined by θa = p and â is defined before Lemma 2 in [18].

If |a− â(x)| < 1,

D(x | Bn,p) = − log2 Bn,p{x} −KP(x | n, p) +O(1)

≥ − log2 Bn,E(x){x} −KP(x | n,E(x))−O(1)
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= D(x | Bn,E(x))−O(1),

where the inequality uses Lemma 2 in [18] (which ensures − log2 Bn,p{x} ≥
− log2 Bn,E(x){x} −O(1)) and KP(x | n,E(x)) ≥ KP(x | n, p)−O(1).

If |a− â(x)| ≥ 1,

D(x | Bn,p) = − log2 Bn,p{x} −KP(x | n, p) +O(1)

≥ − log2 Bn,E(x){x}+ ϵ |a− â(x)|
−KP(x | n,E(x))− 2 log (|a− â(x)|+ 1)−O(1)

≥ D(x | Bn,E(x))−O(1),

where ϵ > 0 is a universal constant and the inequality uses Lemma 3 in [18] and
the standard bound KP(m) ≤ 2 logm+O(1) for m ∈ {1, 2, . . . }.

Proof of Theorem 2

Theorem 2 will follow from (8) in Theorem 3 and the definition of the estimator
E if we show that the restriction of binn,En(k) to the subsets of A(k) coincides, to
within a constant factor, with the uniform probability measure on A(k), where
n ranges over N and k over {1, . . . , n}. By Lemma 2 and Corollary 3 in [18], it
suffices to show that binn,p̂(k′)(k

′) coincides, to within a constant factor, with

(k′(n − k′)/n)−1/2, k′ ranging over A(k), where p̂(k′) = k′/n is the maximum
likelihood estimate of the parameter p. It remains to apply Stirling’s formula.

D Arcsine transform

The justification of the partition (2) given at the end of the note is in terms of
the standard deviation of k/n. The partition itself is not motivated, but it was
obtained from the differential equation

dp√
p(1− p)

= du, (9)

p ranging over the interval [0, 1]. Its solution u = u(p) gives a random variable
which has an approximately constant variance when we plug k/n in place of p.
This again follows from the variance of k/n being proportional to p(1− p).

Solving (9), we obtain

p =
1

2
(1− cosu) = sin2

u

2
, u ∈ [0, π].

The inverse function, u as function of p, is a “variance-stabilizing transforma-
tion”. Its standard representation is

u = 2arcsin
√
p.

This transformation was proposed by Zubin [22] (following Hotelling’s sugges-
tion and based on earlier work by Fisher), and it is known (with the coefficient
of 2 omitted) as the arcsine transform. The arcsine transform is popular in
sciences; not only is it widely used [12] but also widely abused [21].
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