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Abstract

This note explains how conformal predictive distributions can be used for the
purpose of decision-making. Namely, a major limitation of conformal predictive
distributions is that, at this time, they are only applicable to regression pro-
blems, where the label is a real number; however, this does not prevent them
from being used in a general problem of decision making. The resulting metho-
dology of conformal predictive decision making is illustrated on a small bench-
mark data set. Our main theoretical observation is that there exists an asymp-
totically efficient predictive decision-making system which can be obtained by
using our methodology (and therefore, satisfying the standard property of vali-
dity).

Contents

1 Introduction 1

2 Conformal predictive distributions 1

3 The standard problem of decision making 3
3.1 Basic classification . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Asymmetric classification . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Matrix games against nature . . . . . . . . . . . . . . . . . . . . 5

4 An example application 5

5 Asymptotically efficient decision making 6

6 Connections with existing literature and dangers of overfitting 8
6.1 Statistical decision theory . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Confidence and predictive distributions . . . . . . . . . . . . . . . 8
6.3 Statistical learning theory . . . . . . . . . . . . . . . . . . . . . . 9
6.4 Dangers of overfitting in our theory . . . . . . . . . . . . . . . . . 9

7 Conclusion 10

References 10



1 Introduction

Conformal predictive distributions were introduced in Vovk et al. (2017) as re-
sult of combining the notion of predictive distributions (Schweder and Hjort,
2016, Chapter 12, and Shen et al., 2018) with the method of conformal pre-
diction (Vovk et al., 2005). This note shows how they can be applied in decision
making. Since conformal prediction satisfies the standard property of validity,
our methods will lead to efficient decisions when applied to prediction algorithms
with good resolution (even if they are miscalibrated).

Let X and Y be fixed non-empty measurable spaces; we will call them the
object and label spaces, respectively. The Cartesian product Z := X × Y is
the observation space. Suppose we are given a training sequence z1, . . . , zn of
observations zi = (xi, yi) ∈ Z. In this note we discuss the following decision
problem: given an object x ∈ X and a set D of available decisions, choose the
best decision d ∈ D for that object. A major limitation of conformal predictive
distributions, defined in Section 2, is that at this time they only solve the
problem of probabilistic regression, where labels are real numbers. The purpose
of this note is to explain that they are still applicable to our decision problem.

2 Conformal predictive distributions

In this section we define conformal predictive distributions following Vovk et al.
(2017). We let U0,1 stand for the uniform probability measure on the interval
[0, 1] and consider the real line R as the label space. A function Q : (X ×
R)n+1 × [0, 1]→ [0, 1], where n ∈ N := {1, 2, . . .} is a natural number, is called
a randomized predictive system if:

R1a For each training sequence (z1, . . . , zn) ∈ (X × R)n and each test object
x ∈ X, the function Q(z1, . . . , zn, (x, y), τ) is monotonically increasing
both in y and in τ .

R1b For each training sequence (z1, . . . , zn) ∈ (X × R)n and each test object
x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y), 0) = 0,

lim
y→∞

Q(z1, . . . , zn, (x, y), 1) = 1.
(1)

R2 For any probability measure P on X×R, the distribution of Q (as function
of random training observations z1 ∼ P ,. . . , zn ∼ P , a random test obser-
vation z ∼ P , and a random number τ ∼ U0,1, all assumed independent)
is uniform:

∀α ∈ [0, 1] : P {Q(z1, . . . , zn, z, τ) ≤ α} = α.

A conformity measure is a measurable function A : (X × R)n+1 → R that
is invariant with respect to permutations of the first n observations: for any
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sequence (z1, . . . , zn) ∈ (X × R)n, any z ∈ X × R, and any permutation π of
{1, . . . , n},

A(z1, . . . , zn, z) = A
(
zπ(1), . . . , zπ(n), z

)
.

The conformal transducer determined by a conformity measure A is defined as

Q(z1, . . . , zn, (x, y), τ) :=
1

n+ 1
|{i = 1, . . . , n | αyi < αy}|

+
τ

n+ 1
|{i = 1, . . . , n | αyi = αy}|+ τ

n+ 1
, (2)

where (z1, . . . , zn) ∈ (X × R)n is a training sequence, x ∈ X is a test object,
and for each y ∈ R the corresponding conformity scores αyi and αy are defined
by

αyi := A(z1, . . . , zi−1, (x, y), zi+1, . . . , zn, zi), i = 1, . . . , n,

αy := A(z1, . . . , zn, (x, y)).

A function is a conformal transducer if it is the conformal transducer determined
by some conformity measure. A conformal predictive system is a function which
is both a conformal transducer and a randomized predictive system. We will
also use the same terminology (randomized and conformal predictive systems,
etc.) in the situation where n ranges over the natural numbers N; e.g., a family
(Qn)n∈N of randomized predictive systems Qn : (X×R)n+1× [0, 1]→ [0, 1] will
also be referred to as a randomized predictive system.

A conformal predictive distribution (CPD) is (2) considered as a function of
y, for a conformal predictive system Q. Property R1a ensures that this function
is increasing, which is one of the defining properties of distribution functions.
Property R1b says that it changes essentially from 0 to 1 as y increases from −∞
to ∞, which is another defining property. Property R2 is the main property of
validity for conformal predictive systems, which is satisfied automatically (Vovk
et al., 2005). The last argument τ in Q(z1, . . . , zn, (x, y), τ) does not affect the
value of Q much but still makes the property of validity R2 possible. In the
terminology of Vovk et al. (2017), the thickness of (2) is typically 1/(n + 1),
meaning that (2) does not change by more than 1/(n + 1) when τ ranges over
[0, 1] unless y is one of a finite number of points.

The following lemma gives a simple property of CPDs allowing us to integrate
over them efficiently.

Lemma 1. Any CPD

Q∗(y) := Q(z1, . . . , zn, (x, y), τ) (3)

is a piecewise constant function that has at most 2n points of discontinuity.

Proof. Since Q(z1, . . . , zn, (x, y), τ) is a convex mixture of Q(z1, . . . , zn, (x, y), 0)
and Q(z1, . . . , zn, (x, y), 1), namely,

Q(z1, . . . , zn, (x, y), τ) = (1− τ)Q(z1, . . . , zn, (x, y), 0)

+ τQ(z1, . . . , zn, (x, y), 1),
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it suffices to prove that Q(z1, . . . , zn, (x, ·), 0) and Q(z1, . . . , zn, (x, ·), 1) are pie-
cewise constant functions that have at most n points of discontinuity. Let us
consider, for concreteness, Q(z1, . . . , zn, (x, ·), 0). By definition (cf. (2)), this
function is monotonically increasing and takes values in the set {0, 1/(n +
1), . . . , n/(n+ 1)}; therefore, it is piecewise constant and has at most n jumps.

For any function f : R→ R, we define the integral∫
f(y)Q(z1, . . . , zn, (x, dy), τ) =

∫
fdQ∗ :=

∑
y:∆Q∗(y)6=0

f(y)∆Q∗(y), (4)

where ∆Q∗(y) := Q∗(y+)−Q∗(y−) is the jump of the CPD Q∗, as defined by
(3), at y; by Lemma 1, the sum in (4) is finite.

3 The standard problem of decision making

In the rest of this note, with each label y ∈ Y and each decision d ∈ D we
associate a von Neumann–Morgenstern utility U(y, d). Formally, we are given
a utility function U : Y ×D → R, which will always be assumed measurable.
We will assume that the decision space is finite, |D| <∞.

Remark. This note’s definitions and results can be extended to the case where
U depends, additionally, on the object x, so that U becomes a function of three
variables, x ∈ X, y ∈ Y, and d ∈ D. However, this would require an extension
of a result (Vovk, 2017, Theorem 3) that we will need in the proof of Theorem 2
below. Moreover, in applications, U = U(y, d) does not usually depend on the
object x.

We will need a stronger version of condition R1b: namely, in addition to (1),
we will assume

lim
y→−∞

Q(z1, . . . , zn, (x, y), 1) =
1

n+ 1
,

lim
y→∞

Q(z1, . . . , zn, (x, y), 0) =
n

n+ 1
.

(5)

This condition is usually satisfied: consider, e.g., the standard definition

A(z1, . . . , zn, (x, y)) := y − ŷ, (6)

where ŷ is the prediction for y computed from z1, . . . , zn and (x, y) by a method
that is invariant with respect to permutations of z1, . . . , zn, or its variation

A(z1, . . . , zn, (x, y)) :=
y − ŷ
σ̂y

,

where σ̂y > 0 is an estimate of the variability or difficulty of y computed from
z1, . . . , zn and (x, y) by a method that is invariant with respect to permutations
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Algorithm 1 Conformal predictive decision making

Require: A training sequence (xi, yi) ∈ Z, i = 1, . . . , n.
Require: A test object x ∈ X.
1: for d ∈ D do
2: Create a new training sequence (xi, U(yi, d)), i = 1, . . . , n.
3: Find the CPD Q∗d by (8) from this training sequence.
4: Compute the utility of d as

∫
uQ∗d(du).

5: end for
6: Return a d ∈ D with the largest utility.

of z1, . . . , zn. (Both methods may ignore y, of course.) Condition (5) ensures
that different integrals (4) are comparable; even though they are not expected
values (the total mass of Q∗ is less than 1), they are nearly expected values (the
total mass of Q∗ is n/(n+ 1)) with the same shortfall of the total mass.

Informally, our task is, given a training sequence z1, . . . , zn, where zi =
(xi, yi), and a test object x ∈ X, to choose a suitable decision d ∈ D in view
of the utility function U ; the problem is that the utility U(y, d) depends on
the unknown label y of x. A predictive decision-making system (PDMS) is a
measurable function F : Zn × X → D, or a family of such functions for all
n = 1, 2, . . .; the intuition is that F (z1, . . . , zn, x) is the decision recommended
for the new object x based on the training set z1, . . . , zn. It is randomized when
it depends, additionally, on a random number τ ∈ [0, 1] (representing internal
coin tossing). The regret of a PDMS F (perhaps randomized) on an object x
and training set z1, . . . , zn under a probability measure P on Z is defined to be

RF (z1, . . . , zn, x) := max
d∈D

∫
U(y, d)P (dy | x)−

∫
U(y, F (z1, . . . , zn, x))P (dy | x),

(7)
where P (dy | x) is a regular conditional distribution (assumed to exist) for y
given x under P . The F in the last integral in (7) may depend on the internal
coin tossing (i.e., on τ ∼ U0,1), in which case we write RF (z1, . . . , zn, x, τ) for
the left-hand side of (7). We are interested in PDMSs with small regret.

Our randomized algorithm is given as Algorithm 1. The CPD Q∗d in line 3
is defined as

Q∗d(u) := Q
(
(x1, U(y1, d)), . . . , (xn, U(yn, d)), (x, u), τ

)
, (8)

where Q is defined by (2) and assumed to satisfy (5).
In statistical decision theory, it is customary to use the loss function

L(y, d) := −U(y, d). (According to Berger 1993, “Statisticians seem to be
pessimistic creatures who think in terms of losses.”) Algorithm 1 in terms of
losses is obtained by replacing U with L, replacing “utility” with “loss”, and
replacing “largest” with “smallest”.
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3.1 Basic classification

A basic special case is where Y is a finite set, D = Y, and the loss function is

L(y, d) :=

{
0 if y = d

1 otherwise.
(9)

In this and next subsections we will be applying Algorithm 1 in terms of losses.
Let us check that, in the case of basic classification, Algorithm 1 becomes a

version of the standard one-against-the-rest procedure (Vovk et al., 2005). For
a fixed d ∈ D, we create a new training set replacing label d by 0 and replacing
all other labels by 1. The resulting CPD Q∗d is not necessarily concentrated, or
nearly concentrated, at one point (intuitively, such a point would represent the
probability that the test label is different from d); however, we can still interpret∫
uQ∗d(du) as the probability that the test label will be different from d. Now

we predict the label d with the highest probability (by choosing the smallest∫
uQ∗d(du)).

3.2 Asymmetric classification

There are many cases where, unlike (9), different types of classification errors
lead to different losses (for example, classifying an ill person as healthy is usu-
ally regarded a graver mistake than classifying a healthy person as ill). This
corresponds to replacing 1 in (9) (which can now be interpreted as a square
matrix of size |Y| × |Y|) by different positive numbers.

3.3 Matrix games against nature

More generally, we can consider arbitrary finite sets Y and D; then the utility
function U (or loss function L) can be identified with a |Y| × |D| matrix.

4 An example application

To illustrate the application of Algorithm 1 in practice we use the Mushroom
data set from the UCI repository (Dheeru and Karra Taniskidou, 2017). This
data set contains observations on whether a mushroom is edible or not based on
22 observed attributes. We use an asymmetric utility function which penalizes
eating a poisonous mushroom severely, as identified by the following matrix of
utilities:

eat don’t eat
edible 1 0

not edible −10 1

We use the standard conformity measure (6), where ŷ is the 1 Nearest Neighbour
prediction for the label of x based on the Hamming distance. In Figure 1 we
contrast the observed mean utility versus training set size for Algorithm 1 and
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simply eating only mushrooms predicted to be edible. We draw 1000 random
balanced training sets for each of a range of sizes ({4, 6, . . . , 20}), evaluating the
performance of the two procedures on each training set using random balanced
test sets of size 10.

One clearly observes that Algorithm 1 appropriately offsets the decision not
to eat potentially poisonous mushrooms but that this benefit reduces with in-
creasing training size as predictivity improves overall.
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Figure 1: Average utility vs training set size for Algorithm 1 (4) and simply
eating only mushrooms predicted to be edible (◦). Shaded areas indicate 95%
confidence intervals on the mean.

5 Asymptotically efficient decision making

In this section we state a simple corollary of a result in Vovk (2017) showing
that asymptotically we can choose the best possible decisions under weak as-
sumptions about the object space X and the label space Y.

Let us say that a randomized predictive system Q is consistent for a proba-
bility measure P on X× R if, for any bounded continuous function f : R→ R,∫

fdQn −
∫
f(y)P (dy | xn+1)→ 0 (n→∞) (10)

in probability, where:

• Qn is the predictive distribution Qn : y 7→ Q(z1, . . . , zn, (xn+1, y), τn) (for
a given τn) output by Q as its forecast for the label yn+1 of xn+1 based
on the training set (z1, . . . , zn), where zi = (xi, yi) ∈ X× R;

• P (dy | xn+1) is a regular conditional distribution of y given x = xn+1

under (x, y) ∼ P ;

• zn ∼ P and τn ∼ U0,1, n = 1, 2, . . ., are assumed independent.
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It is clear that this notion of consistency does not depend on the choice of the
version of the regular conditional distribution P (dy | x) in (10). Notice that the
observations z1, z2, . . . are assumed to be generated from P in the IID fashion,
and the internal coin tosses τ1, τ2, . . . in Q are assumed to be independent of
them. The randomized predictive system Q is universally consistent if it is
consistent for any probability measure P on X× R.

A randomized PDMS is asymptotically efficient if, for any probability mea-
sure P on Z = X×Y, its regret RF (z1, . . . , zn, xn+1, τn) on xn+1 and z1, . . . , zn
under P tends to 0 in probability when zi = (xi, yi) ∈ Z, i = 1, 2, . . ., are
produced from P and the random numbers τi are produced from U0,1, all inde-
pendently.

Theorem 2. Suppose, in addition to the decision space D being finite, that X
is a standard Borel space and the utility function U : Y × D → R is boun-
ded. Asymptotically efficient PDMSs exist; in particular, Algorithm 1 is an
asymptotically efficient randomized PDMS whenever it is based on a universally
consistent randomized predictive system (which exists under these assumptions).

Proof. It suffices to prove that, for each d ∈ D,∫
U(y, d)P (dy | xn+1)−

∫
uQ∗d(du)→ 0 (n→∞) (11)

in probability, where Q∗d is computed as in Algorithm 1 for the training set
z1, . . . , zn, test object xn+1, and random number τn; indeed, under (11) and by
(7), the requirement

RF (z1, . . . , zn, xn+1, τn)→ 0

can be rewritten as

max
d∈D

∫
uQ∗d(du)−

∫
uQ∗F (z1,...,zn,xn+1,τn)(du)→ 0,

which is true (even with “→” replaced by “=”) by definition for F computed
by Algorithm 1. Fix any d ∈ D and let P ′ be the image of the probability
distribution P under the mapping (x, y) ∈ Z 7→ (x, U(y, d)) ∈ X×R. Then (11)
can be rewritten as∫

uP ′(du | xn+1)−
∫
uQ∗d(du)→ 0 (n→∞),

and so the conclusion follows from the universal consistency of the randomized
predictive system used in Algorithm 1, since the identity function u 7→ u is
continuous and, under P ′(du | xn+1), bounded with probability one; the as-
sumption that X is a standard Borel space is used in the statement of universal
consistency (Vovk, 2017, Theorem 3).

A universally consistent randomized predictive system is constructed in Vovk
(2017) explicitly, and it is, of course, a conformal predictive system. Theorem 2
does not use its property of validity (R2) but this property is likely to improve
the quality of predictions as measured by the utility function U .
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6 Connections with existing literature and dan-
gers of overfitting

In the first two subsections of this section we will briefly discuss classical statis-
tical decision theory and its predictive counterpart, and the classical theory of
confidence distributions and its predictive counterpart. Both classical theories
are concerned with the value of a statistical parameter and, therefore, are rarely
useful in the nonparametric framework of mainstream machine learning (since
the parameter space, the set of all probability measures on the observation space
Z, then becomes too large). Their predictive versions replace the parameter by
a future random variable. In the final two subsections we briefly compare con-
formal predictive decision theory with statistical learning theory and discuss the
dangers of overfitting in both theories.

6.1 Statistical decision theory

Statistical decision theory was introduced by Wald (1950), who was in part
inspired by developments in game theory (von Neumann and Morgenstern,
1953). The latter book introduced utilities (von Neumann and Morgenstern,
1953, Appendix, added in the second edition). The main difference between
game-theoretic decision theory and statistical decision theory is that in the for-
mer the opponent is intelligent whereas in the latter it is of a neutral nature.
A minor difference is that the former prefers the language of utilities, and the
latter that of losses (which can be defined as minus utilities; we will ignore
the difference in this appendix). The existing literature on statistical decision
theory is massive, often combines ideas of decision theory with Bayesian ideas,
and contains such well-known books as Berger (1993), Schervish (1995, Chap-
ter 3), and Bernardo and Smith (2000). In the classical version the utility
function U = U(θ, d) depends on a statistical parameter θ and decision d (see,
e.g., Berger 1993, Section 1.2). In the predictive version (see, e.g., Berger 1993,
Section 2.4.4) the utility function U = U(y, d) depends on a future random vari-
able y and decision d. It is often argued (in, e.g., Berger 1993, Section 2.4.4) that
the predictive version can be reduced to the classical version, but the usefulness
of such a reduction is limited in the nonparametric context of this note.

6.2 Confidence and predictive distributions

As we mentioned in Section 1, predictive distributions were introduced by Sch-
weder and Hjort (2016, Chapter 12) and Shen et al. (2018). Both groups of
authors were motivated by confidence distributions for a parameter value; mo-
reover, whereas the latter group used the term “predictive distributions”, the
former used the longer “prediction confidence distributions”. The term “con-
fidence distribution” was introduced by Cox (1958), but the notions of both
confidence and predictive distributions had been widely used by Fisher under
the rubric of “fiducial distributions”. The formal definition of confidence dis-
tributions is due to Schweder and Hjort (2002, Definition 1) and Singh et al.
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(2005, Definition 1.1) (see also the influential review by Xie and Singh 2013);
the key element of the definition is property R2 (see Section 2 above). In the
nonparametric context of this note we only use predictive distributions.

6.3 Statistical learning theory

The standard problem of supervised learning (see, e.g., Vapnik 2000, Section 1.2)
can be stated in terms of decision making. We still have an object space X, a
label space Y, a decision space D, and a loss function L : Y ×D→ R. We are
also given a learning machine F : X × Λ → D, where Λ is a parameter space;
for each parameter α ∈ Λ, the function F (x, α) of x ∈ X can be considered
as a decision rule giving a recommended decision d := F (x, α) in view of the
observed object x ∈ X. The goal is to minimize the risk functional

R(α) :=

∫
L(y, F (x, α))P (dx, dy),

where P is the unknown data-generating distribution. One way of solving this
problem is the empirical risk minimization principle, which recommends mini-
mizing R(α) after replacing P by the empirical probability distribution. One
way of controlling overfitting uses the notion of VC dimension (overfitting is a
much more serious problem in the case of statistical learning theory: e.g., the
assumption of a finite Λ would be extremely restrictive, whereas our assumption
of a finite D still allows, e.g., any classification problems, and the example given
in the next subsection is rather exotic).

Conformal predictive decision making is different from statistical learning
theory in that it does not need a learning machine and that it is based on pre-
dictive distributions that satisfy a small-sample property of validity (namely,
R2). In this note we do not state directly any small-sample properties of vali-
dity of conformal predictive decision making and only state a result about its
asymptotic efficiency.

6.4 Dangers of overfitting in our theory

In the main part of this note we only discussed the case of a finite decision space
D. One problem for an infinite, or finite but very large, D is the possibility
of “overfitting”, where one of the decisions d ∈ D can lead to a small loss
simply by chance. As a simple example, consider a probability measure P on an
observation space Z = X×Y = X×R such that the conditional distribution of
the label y ∈ Y given the object x ∈ X is always continuous (for some version
of the conditional distribution). The decision space is infinite, namely the set
of all finite subsets of the label space Y = R. The utility function is

U(y, d) :=


1 if d = ∅
2 if y ∈ d
0 otherwise.
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Given a training sequence (x1, y1), . . . , (xn, yn), Algorithm 1 will return (for a
reasonable conformity measure) a decision d ⊇ {y1, . . . , yn}, which is clearly
suboptimal; the optimal decision would be d := ∅.

The danger of overfitting increases when the underlying algorithm used in
the method of conformal prediction is randomized and is very substantially
affected by randomness (the random choice of τ in (2) typically does not affect
the chosen decision and so does not contribute to overfitting). This effect is akin
to the possibility of violating the property of validity by aggregated conformal
predictors, as reported in Linusson et al. (2017).

In principle, the methods of this note are applicable to complicated decision
spaces D, such as the set of all probability measures on a finite label space Y (the
problem of probabilistic classification), or even the set of all probability measures
on Y := Rd for d ∈ {2, 3, . . .} (the problem of multi-dimensional probabilistic
regression; the case d = 1 is covered already by the basic method of Section 2).
Apart from dangers of overfitting, computational problems can be expected to be
severe, and finding efficient implementations for specific underlying algorithms
is an interesting direction of further research.

7 Conclusion

We extend the method of conformal prediction to make it applicable to decision
making. Our hope is that this extension will prove to be useful in practice,
and this is perhaps the most important direction of further research. We have
limited ourselves to analysing a given batch of data, without attempting active
learning, and this limitation has made it possible to develop a fairly systematic
theory.
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