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Abstract

This paper proposes general methods for the problem of multiple testing of
a single hypothesis, with a standard goal of combining a number of p-values
without making any assumptions about their dependence structure. An old
result by Rüschendorf and, independently, Meng implies that the p-values can
be combined by scaling up their arithmetic mean by a factor of 2, and no smaller
factor is sufficient in general. A similar result by Mattner about the geometric
mean replaces 2 by e. Based on more recent developments in mathematical
finance, specifically, robust risk aggregation techniques, we extend these results
to generalized means; in particular, we show that K p-values can be combined
by scaling up their harmonic mean by a factor of lnK asymptotically as K →∞.
This leads to a generalized version of the Bonferroni–Holm procedure. We also
explore methods using weighted averages of p-values. Finally, we discuss the
efficiency of various methods of combining p-values and how to choose a suitable
method in light of data and prior information.
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1 Introduction

Suppose we are testing the same hypothesis using K ≥ 2 different statistical
tests and obtain p-values p1, . . . , pK . How can we combine them into a single
p-value?

Some early answers to this question include those of Tippett [40], Pearson
[31] and Fisher [8]. These solutions assume that the p-values are independent,
whereas we would like to avoid any assumptions besides all p1, . . . , pK being
bona fide p-values. Fisher’s method has been extended to dependent p-values in,
e.g., [4, 20], but the combined p-values obtained in those papers are approximate;
in this paper we are interested only in precise or conservative p-values. A
summary of combination methods for p-values can be found in, e.g., Oosterhoff
[29] and Cousins [5]; see also the more specialized review by Owen [30].

Without assuming any particular dependence structure among p-values, the
simplest way of combining them is the Bonferroni method

F (p1, . . . , pK) := K min(p1, . . . , pK); (1)

when F (p1, . . . , pK) exceeds 1 it can be replaced by 1, but we usually ignore this
trivial step. Albeit F (p1, . . . , pK) is a p-value (for precise definitions, see Section
2), it has been argued that in some cases it is overly conservative. Rüger [33]
extends the Bonferroni method by showing that, for any fixed k ∈ {1, . . . ,K},

F (p1, . . . , pK) :=
K

k
p(k) (2)

is a p-value, where p(k) is the kth smallest p-value among p1, . . . , pK ; see [28]
for a simpler exposition. Hommel [15] develops this by showing that

F (p1, . . . , pK) :=

(
1 +

1

2
+ · · ·+ 1

K

)
min

k=1,...,K

K

k
p(k) (3)

is also a p-value. In the case of independent p1, . . . , pn, Simes [39] improves (3)
by removing the first factor on the right-hand side of (3).

A natural way to combine K p-values is to average them, by using p̄ :=
(p1 + · · · + pK)/K, at least when the tests have similar power. Unfortunately,
p̄ is not necessarily a p-value. An old result by Rüschendorf [34, Theorem 1]
shows that 2p̄ is a p-value; moreover, the factor of 2 cannot be improved in
general. In the statistical literature this result was rediscovered by Meng [27,
Theorem 1].

In this paper (see Section 3) we turn to a general notion of the mean as axi-
omatized by Andrei Kolmogorov [19] and promoted in the context of combining
independent p-values by [22]. We adapt various results of robust risk aggrega-
tion [6, 1, 7, 42, 18] to combining p-values by averaging them in Kolmogorov’s
wider sense. In particular, to obtain a p-value from given p-values p1, . . . , pK , it
is sufficient to multiply their geometric mean by e, as noticed by Mattner [25],
and to multiply their harmonic mean by e lnK for K > 2. More generally, we
consider the mean Mr,K(p1, . . . , pK), sometimes referred to as generalized mean,
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defined by ((pr1 +· · ·+prK)/K)1/r for r ∈ [−∞,∞], and derive values of ar,K ma-
king ar,KMr,K a merging function. In particular, our results cover the Bonfer-
roni method (1), which corresponds toM−∞,K(p1, . . . , pK) = K min(p1, . . . , pK)
(see, e.g., [13, (2.3.1)]).

The median is also sometimes regarded as a kind of average. Rüger’s (2),
applied to k := dK/2e, says that p-values can be combined by scaling up their
median by a factor of 2, exactly for even K and approximately for large odd K.
Therefore, we have the same factor of 2 as in Rüschendorf’s [34] result. More
generally, the α quantile p(dαKe) becomes a p-value if multiplied by 1/α.

Sections 4–6 barely scratch the surface of three important topics: weighted
averaging of p-values, the efficiency of our methods of combining p-values un-
der various alternative distributions, and the choice of a suitable value of the
parameter r for generalized mean. Section 7 concludes the paper listing some
directions of further research.

It is often possible to automatically transform results about multiple tes-
ting of a single hypothesis into results about testing multiple hypotheses; the
standard procedures are Marcus et al.’s [24] closed testing procedure and its mo-
dification by Hommel [16]. In particular, when applied to the Bonferroni method
the closed testing procedure gives the well-known procedure due to Holm [14],
which we will refer to as the Bonferroni–Holm procedure; see, e.g., Hommel
[16, 17]) for its further applications. The methods we develop in Section 3 can
similarly be adapted to the testing of multiple hypotheses, as we briefly discuss
in Appendix B. All proofs are also given in the appendix.

If E is a property of elements of a set X, 1E : X → [0,∞) is the indicator
function of E: 1E(x) = 1 if x satisfies E and 1E(x) = 0 if not. Throughout we
will use the following terminology. A function F : [0, 1] → [0,∞) is increasing
(resp. decreasing) if F (x1) ≤ F (x2) (resp. F (x1) ≥ F (x2)) whenever x1 ≤ x2.
A function F : [0, 1]K → [0,∞) is increasing (resp. decreasing) if it is increasing
(resp. decreasing) in each of its arguments. A function is strictly increasing or
strictly decreasing when these conditions hold with strict inequalities.

2 Merging functions

A p-variable is a random variable P that satisfies

P(P ≤ ε) ≤ ε, ∀ε ∈ (0, 1). (4)

The values taken by a p-variable are p-values, allowed to be conservative. In
Section 1 the expression “p-value” was loosely used to refer to p-variables as well.
A merging function is an increasing Borel function F : [0, 1]K → [0,∞) such
that F (U1, . . . , UK) is a p-variable for any random variables U1, . . . , UK that
are distributed uniformly on [0, 1] and defined on the same probability space,
which can be arbitrary. Without loss of generality we assume that U1, . . . , UK
are defined on the same atomless probability space that is fixed throughout the
paper (cf. [9, Proposition A.27]). Let U be the set of all random variables on our
probability space that are distributed uniformly on [0, 1]. Using the notation U ,
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we can say that an increasing Borel function F : [0, 1]K → [0,∞) is a merging
function if, for each ε ∈ (0, 1),

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} ≤ ε. (5)

We say that a merging function F is precise if, for each ε ∈ (0, 1),

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} = ε. (6)

Remark 1. The requirement that a merging function be Borel does not follow
automatically from the requirement that it be increasing: see the remark after
Theorem 4.4 in [11].

It may be practically relevant to notice that, for any merging function F ,
F (P1, . . . , PK) is a p-variable whenever P1, . . . , PK are p-variables (on the same
probability space). Indeed, for each k ∈ {1, . . . ,K} we can define a uniformly
distributed (see, e.g., [35, Proposition 2.1]) random variable Uk ≤ Pk by

Uk(ω) := P(Pk < Pk(ω)) + Θ(ω)P(Pk = Pk(ω)), ω ∈ Ω,

where Θ is a random variable distributed uniformly on [0, 1] and independent
of P1, . . . , PK , and Ω is the underlying probability space extended to carry such
a Θ; we then have

P(F (P1, . . . , PK) ≤ ε) ≤ P(F (U1, . . . , UK) ≤ ε) ≤ ε, ∀ε ∈ (0, 1).

Therefore, combining p-values can be carried out in multiple layers, although it
may make the final combined p-value overly conservative; we will discuss this
further in Subsection 6.3.

3 Combining p-values by symmetric averaging

In this section we present our methods of combining p-values via averaging. A
general notion of averaging, axiomatized by Kolmogorov [19], is

Mφ,K(p1, . . . , pK) := ψ

(
φ(p1) + · · ·+ φ(pK)

K

)
, (7)

where φ : [0, 1] → [−∞,∞] is a continuous strictly monotonic function and
ψ : φ([0, 1]) → [0, 1] is its inverse. For example, arithmetic mean corresponds
to the identity function φ(p) = p, geometric mean corresponds to φ(p) = ln p,
and harmonic mean corresponds to φ(p) = 1/p. Similar axiomatizations were
proposed at about the same time by Mitio Nagumo and Bruno de Finetti; see,
e.g., [13, Section 6.20].

The problem of finding precise p-value merging functions based on the aver-
aging method in (7) is closely connected to robust risk aggregation, an active
topic in mathematical finance; see Remark 2 below. The origin of this field
lies in a problem posed by Kolmogorov (see, e.g., [23]) about bounds on the
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distribution function of the sum of random variables, although in Kolmogorov’s
question there was no mention of financial applications. To establish the main
results in this paper, we will use recent results in robust risk aggregation, in
particular, many results in [6, 43, 1, 7, 42, 18].

Below, we first briefly discuss the connection between the two problems in
Section 3.1, and then present our main results in Section 3.2.

3.1 Quantiles and robust risk aggregation

We start from a simple result (Lemma 1 below) that translates probability state-
ments about merging functions into corresponding statements about quantiles.
This result will allow us to freely use some recent results in the literature on
robust risk aggregation.

Define the left α-quantile of a random variable X for α ∈ (0, 1],

qα(X) := sup{x ∈ R : P(X ≤ x) < α},

and the right α-quantile of X for α ∈ [0, 1),

q+
α (X) := sup{x ∈ R : P(X ≤ x) ≤ α}.

Notice that q1(X) is the essential supremum of X and q+
0 (X) is the essential

infimum of X. For a function F : [0, 1]K → [0,∞) and α ∈ (0, 1), write

qα(F ) := inf {qα(F (U1, . . . , UK)) |U1, . . . , UK ∈ U} .

Lemma 1. For an increasing Borel function F : [0, 1]K → [0,∞):

(a) F is a merging function if and only if qε(F ) ≥ ε for all ε ∈ (0, 1);

(b) F is a precise merging function if and only if qε(F ) = ε for all ε ∈ (0, 1).

Remark 2. This remark discusses how the problem of combining p-values is
related to robust risk aggregation in the field of mathematical finance. In quan-
titative risk management, the term robust risk aggregation refers to evaluating
the value of a risk measure of an aggregation of risks X1, . . . , XK with specified
marginal distributions and unspecified dependence structure. More specifically,
if the risk measure is chosen as a quantile qα, known as Value-at-Risk and very
popular in finance, the quantities of interest are typically

q := sup {qα(X1 + · · ·+Xn) |X1 ∼ F1, . . . , Xn ∼ Fn}

and
q := inf {qα(X1 + · · ·+Xn) |X1 ∼ F1, . . . , Xn ∼ Fn} ,

where F1, . . . , Fn denote the prespecified marginal distributions of the risks. The
motivation behind this problem is that, in practical applications of banking and
insurance, the dependence structure among risks to aggregate is very difficult
to accurately model, as compared with the corresponding marginal distributi-
ons. The interval [q, q] thus represents all possible values of the aggregate risk
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measure given the marginal information. A more detailed introduction to this
topic can be found in [26, Section 8.4.4] and [36, Chapter 4]. Via Lemma 1,
the quantities q and q are obviously closely related to the problem of combining
p-values. There are few explicit formulas for q and q but fortunately some do
exist in the literature, and they become useful in our study of merging functions.

3.2 Main results

In this subsection, we present our main results on merging functions. We mostly
focus on an important special case of (7), namely,

Mr,K(p1, . . . , pK) :=

(
pr1 + · · ·+ prK

K

)1/r

, (8)

where r ∈ R \ {0} and the following standard conventions are used: 0c :=∞ for
c < 0, 0c := 0 for c > 0, ∞ + c := ∞ for c ∈ R ∪ {∞}, and ∞c := 0 for c < 0.
The case r = 0 considered by Mattner [25] is treated separately as the limit as
r → 0:

M0,K(p1, . . . , pK) := exp

(
ln p1 + · · ·+ ln pK

K

)
=

(
K∏
k=1

pk

)1/K

,

where, as usual, ln 0 := −∞, −∞+c := −∞ for c ∈ R∪{−∞}, and exp(−∞) :=
0. It is also natural to set

M∞,K(p1, . . . , pK) := max(p1, . . . , pK),

M−∞,K(p1, . . . , pK) := min(p1, . . . , pK).

The most important special cases of Mr,K are perhaps those corresponding to
r = −∞ (minimum), r = −1 (harmonic mean), r = 0 (geometric mean), r = 1
(arithmetic mean), and r =∞ (maximum); the cases r ∈ {−1, 0, 1} are known
as Platonic means.

Our main aim is to identify merging functions of the form

ar,KMr,K(p1, . . . , pK), r ∈ [−∞,∞], K = 2, 3, . . . , (9)

where ar,K is a constant, hopefully making the merging function (9) precise. In
cases where an explicit formula of ar,K for (9) to be precise is not available, we
obtain an asymptotically sharp bound in explicit form. The main results are
summarized in Table 1, where a family FK , K = 2, 3, . . . , of merging functions
on [0, 1]K is called asymptotically precise if, for any a ∈ (0, 1), the function aFK
is not a merging function for a large enough K; in other words, this family of
merging functions cannot be improved by a constant multiplier. It is well known
[13, Theorem 16] that

Mr1,K ≤Mr2,K on [0, 1]K if r1 ≤ r2; (10)
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Table 1: The main results of Section 3: examples of merging functions, all of
them precise or asymptotically precise, except for the case r = −1, where the
asymptotic formula is not a merging function for finite K

range of r merging function special case claimed in

r =∞ Mr,K precise maximum

r ∈ [K − 1,∞) K1/rMr,K precise Prop. 5

r ∈ [ 1
K−1 ,K − 1] (r + 1)1/rMr,K precise arithmetic Prop. 4

r ∈ (−1,∞] (r + 1)1/rMr,K asymptotically precise Prop. 3

r = 0 eMr,K asymptotically precise geometric Prop. 6

r = −1
e(lnK)Mr,K not precise

harmonic Prop. 9
(lnK)Mr,K (asymptotic formula)

r ∈ (−∞,−1) r
r+1K

1+1/rMr,K asymptotically precise Prop. 8

r = −∞ KMr,K precise Bonferroni

therefore, the constant ar,K making (9) a precise merging function should be
generally decreasing in r.

Two of our results, Theorems 2 and 7, are general in the sense of describing
properties of Kolmogorov’s general averaging function (7); Theorem 2 covers the
case of integrable φ and therefore the case r > −1 in (8), and Theorem 7 covers
the case of non-integrable φ and therefore the case r ≤ −1 in (8). Propositions
3–9 give results shown in Table 1. We further show in Proposition 10 that, for
the definition of a p-variable in (4), one can replace “for all ε” by “for some ε”
in all averaging methods based on (8).

Theorem 2. Suppose a continuous strictly monotonic φ : [0, 1] → [−∞,∞] is

integrable, i.e.,
∫ 1

0
|φ(u)|du <∞. Then, for any K ∈ {2, 3, . . . } and any ε > 0,

P
(
Mφ,K(p1, . . . , pK) ≤ ψ

(
1

ε

∫ ε

0

φ(u)du

))
≤ ε. (11)

As we stated it, Theorem 2 gives a critical region of size ε. An alternative
statement is that Ψ−1(Mφ,K) is a merging function, where the strictly increasing
function Ψ is defined by

Ψ(ε) := ψ

(
1

ε

∫ ε

0

φ(u)du

)
, ε ∈ (0, 1). (12)

In what follows, the expression (r+1)1/r is understood to be e = limr→0(r+
1)1/r when r = 0 and 1 = limr→∞(r + 1)1/r when r =∞.

Using Theorem 2 with φ(u) = ur, we see that (r + 1)1/rMr,K is a merging
function for r > −1. Moreover, we can show the constant (r + 1)1/r cannot be
improved in general.
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Proposition 3. Let r ∈ (−1,∞]. Then (r + 1)1/rMr,K , K = 2, 3, . . . , is a
family of merging functions and it is asymptotically precise.

In particular, Proposition 3 implies that for the geometric mean, it has to
be multiplied by the constant factor e, which cannot be improved in general
for large K. The next proposition characterizes the condition under which the
merging function in Proposition 3 is precise.

Proposition 4. For r ∈ (−1,∞) and K ∈ {2, 3, . . . }, the merging function
(r + 1)1/rMr,K is precise if and only if r ∈ [ 1

K−1 ,K − 1].

The most straightforward yet relevant example of Proposition 4, the arithme-
tic average multiplied by 2, namely,

M1,K(p1, . . . , pK) :=
2

K

K∑
k=1

pk,

is a precise merging function for all K ≥ 2, a result obtained by Rüschendorf
[34]. As another special case of Proposition 4, the scaled quadratic average
multiplied by

√
3, namely

√
3M2,K , is a merging function, and it is precise if

and only if K ≥ 3.
In the case r ≥ 1, the merging function in Proposition 4 can be modified in

an explicit way such that it remains precise even for r > K − 1.

Proposition 5. For K ∈ {2, 3, . . . } and r ∈ [1,∞), the function min(r +
1,K)1/rMr,K is a precise merging function.

Because of the importance of geometric mean as one of the Platonic means,
the following result gives a precise, albeit somewhat implicit, expression for the
corresponding precise merging function.

Proposition 6. For each K ∈ {2, 3, . . . }, aGKM0,K is a precise merging
function, where

aGK :=
1

cK
exp (−(K − 1)(1−KcK))

and cK is the unique solution to the equation

ln(1/c− (K − 1)) = K −K2c (13)

over c ∈ (0, 1/K). Moreover, aGK ≤ e and aGK → e as K →∞.

Table 2 reports several values of aGK/e calculated numerically and suggests
that in practice there is no point in improving the factor e for K ≥ 5.

The condition r > −1 in Proposition 3 ensures that the term (12) is finite,

and also that the condition
∫ 1

0
|φ(u)|du <∞ in Theorem 2 is satisfied. However,

the condition rules out the harmonic mean (r = −1) and the minimum (r =
−∞). The next simple corollary of another known result (Theorem 4.2 of [6];
see also Theorem 2.3 of [32]) will cover these cases as well.
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Table 2: Numeric values of aGK/e for the geometric mean

K aGK/e K aGK/e K aGK/e
2 0.7357589 5 0.9925858 10 0.9999545
3 0.9286392 6 0.9974005 15 0.9999997
4 0.9779033 7 0.9990669 20 1.0000000

Theorem 7. Suppose φ : [0, 1] → [−∞,∞] is a strictly decreasing continuous
function satisfying φ(0) =∞. Then, for any ε ∈ (0, 1) such that φ(ε) ≥ 0,

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤ inf
t∈(0,φ(ε)]

∫ φ(ε)+(K−1)t

φ(ε)−t ψ(u)du

t
. (14)

As t→ 0, the upper bound in (14) is not informative since, for t ≈ 0,∫ φ(ε)+(K−1)t

φ(ε)−t ψ(u)du

t
≈ Kt (ψ ◦ φ)(ε)

t
= Kε,

which is dominated by the Bonferroni bound. On the other hand, the upper
bound is informative when t = φ(ε) provided the integral is convergent. For
example, we can see that for r < −1, r

r+1K
1+1/rMr,K is a merging function.

In what follows, the term r/(r + 1) should be understood as its limit 1 when
r = −∞.

Proposition 8. Let r ∈ [−∞,−1). Then r
r+1K

1+1/rMr,K , K = 2, 3, . . . , is a
family of merging functions and it is asymptotically precise.

Proposition 8 includes the Bonferroni bound (1) as special case: for r := −∞,
we obtain that KM−∞,K is a merging function. On the other hand, Proposition
8 does not cover the case r = −1 of harmonic mean directly, but easily implies
a bound leading to the merging function (e lnK)M−1,K , which turns out to be
not so crude.

Proposition 9. Set aHK := (yK+K)2

(yK+1)K , K > 2, where yK is the unique solution

to the equation

y2 = K((y + 1) ln(y + 1)− y), y ∈ (0,∞).

Then aHKM−1,K is a precise merging function. Moreover, aHK ≤ e lnK and
aHK/ lnK → 1 as K →∞.

Even though aHK/ lnK → 1, the rate of convergence is very slow, and
aHK/ lnK > 1 for moderate values of K. In practice, it might be better to
use the conservative merging function (e lnK)M−1,K . Table 3 reports several
values of aHK/ lnK calculated numerically. For instance, for K ≥ 10, one may
use (2 lnK)M−1,K , and for K ≥ 50, one may use (1.7 lnK)M−1,K .
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Table 3: Numeric values of aHK/ lnK for the harmonic mean

K aHK/ lnK K aHK/ lnK K aHK/ lnK
3 2.499192 10 1.980287 100 1.619631
4 2.321831 20 1.828861 200 1.561359
5 2.214749 50 1.693497 400 1.514096

The main emphasis of this section has been on characterizing a > 0 such
that F := aMr,K is a merging function, or a precise merging function. Recall
that F : [0, 1]K → [0,∞) is a merging function if and only if (5) holds for all
ε ∈ (0, 1), and that F is a precise merging function if and only if (6) holds for
all ε ∈ (0, 1). The next proposition shows that in both statements “for all”
can be replaced by “for some” if F = aMr,K . A practical implication is that
even if an applied statistician is interested in the property of validity (4) only
for specific values of ε, such as 0.01 or 0.05, and would like to use aMr,K as a
merging function, she is still forced to ensure that (4) folds for all ε.

Proposition 10. For any a > 0, r ∈ [−∞,∞], and K ∈ {2, 3, . . . }:

(a) F := aMr,K is a merging function if and only if (5) holds for some ε ∈
(0, 1);

(b) F := aMr,K is a precise merging function if and only if (6) holds for some
ε ∈ (0, 1).

4 Combining p-values by weighted averaging

In this section we will briefly consider a more general notion of averaging:

Mφ,w(p1, . . . , pK) := ψ (w1φ(p1) + · · ·+ wKφ(pK))

in the notation of (7), where w = (w1, . . . , wK) ∈ ∆K is an element of the
standard K-simplex

∆K :=
{

(w1, . . . , wK) ∈ [0, 1]K
∣∣w1 + · · ·+ wK = 1

}
.

One might want to use a weighted average in a situation where some of p-values
are based, e.g., on bigger experiments, and then we might want to take them
with bigger weights. Intuitively, the weights reflect the prior importance of the
p-values; see, e.g., [3, page 5], for further details.

Much fewer mathematical results in the literature are available for asymme-
tric risk aggregation. For this reason, we will concentrate on the easier integrable
case, namely, r > −1. Theorem 2 can be generalized as follows.
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Theorem 2w. Suppose a continuous strictly monotonic φ : [0, 1] → [−∞,∞]
is integrable and w ∈ ∆K . Then, for any ε > 0,

P
(
Mφ,w(p1, . . . , pK) ≤ ψ

(
1

ε

∫ ε

0

φ(u)du

))
≤ ε.

Similarly to (8), we set

Mr,w(p1, . . . , pK) := (w1p
r
1 + · · ·+ wKp

r
K)

1/r

for r ∈ R and w = (w1, . . . , wK) ∈ ∆K . We can see that Proposition 3 still
holds when Mr,K is replaced by Mr,w, for any r ∈ R and w ∈ ∆K . This is
complemented by the following proposition, which is the weighted version of
Proposition 4.

Proposition 4w. For w = (w1, . . . , wK) ∈ ∆K and r ∈ (−1,∞), the merging
function (r + 1)1/rMr,w is precise if and only if w ≤ 1/2 and r ∈ [ w

1−w ,
1−w
w ],

where w := maxk=1,...,K wk.

Next we generalize Proposition 5 to non-uniform weights.

Proposition 5w. For w = (w1, . . . , wK) ∈ ∆K and r ∈ [1,∞), the function
min(r+1, 1

w )1/rMr,w is a precise merging function, where w := maxk=1,...,K wk.

An interesting special case of Proposition 5w is for r = 1, i.e., the weighted
arithmetic mean. If w ≤ 1/2, i.e., no single experiment outweighs the total of
all the other experiments, the optimal multiplier for the weighted average is 2,
exactly as in the case of the arithmetic average. If w > 1/2, i.e., there is a single
experiment that outweighs all the other experiments, our merging function is,
assuming w1 = w,

1

w
M1,w(p1, . . . , pK) = p1 +

K∑
k=2

wk
w
pk.

It is obtained by adding weighted adjustments to the p-value obtained from the
most important experiment.

5 Efficiency of merging functions

So far we have emphasized the validity of our methods of combining p-values:
the combined p-value P is guaranteed to satisfy (4) under the null hypothe-
sis p1, p2, . . . , pK ∈ U . In this section we will discuss their efficiency : under
alternative hypotheses, we would like the combined p-value to be small.

We will be interested in asymptotic results as K → ∞. Recall that our
merging functions are

Pr,K(p1, . . . , pK) := ar,KMr,K(p1, . . . , pK),

10
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Figure 1: The asymptotic inflation factor limK→∞ Pr,K/p as function of r when
each p-value pk is either p or 100p with equal probabilities, for some p ∈ (0, 0.01).
The trivial factor is 100, and the ideal, but unattainable, factor is 1.

where r ∈ [−∞,∞], Pr,K is the combined p-value, and

ar,K :=


(r + 1)1/r if r ∈ (−1,∞]

e lnK if r = −1
r
r+1K

1+1/r if r ∈ [−∞,−1),

where for r = 0, r = ∞ and r = −∞ one uses the limiting values of e, 1,
and K, respectively. Notice that we do not truncate Pr,K by replacing it with
min(Pr,K , 1) and interpret large values of Pr,K , Pr,K � 1, as indicators of the
weakness of the merging function: they show us how far it is from being useful.
This will be discussed further after Proposition 11.

The rest of this section consists of two parts. In Subsection 5.1 we consider
an infinite sequence of IID p-values p1, p2, . . . and analyze the performance
of our merging functions on p1, . . . , pK as K → ∞. Of course, we are not
interested in independent p1, p2, . . . per se; after all, if we know the p-values to be
independent, we should use much more efficient methods, such as Fisher’s, that
assume independence. The result in Subsection 5.1 will serve as a basic tool for
the analysis of the general symmetric framework, considered in Subsection 5.2.
We assume only the exchangeability of p1, p2, . . . , and according to de Finetti’s
theorem every exchangeable probability measure on [0, 1]∞ is a mixture of IID
components; in particular, when we look at the realized sequence of p-values,
we can only draw conclusions about the realized IID component.

5.1 IID p-values

In this subsection we assume that the p-values p1, p2, . . . are generated inde-
pendently from the same probability measure Q on [0, 1]. If the support of Q
is finite and does not include 0, the asymptotic performance of Pr,K is poor for
r < −1, but some of r > −1 may have reasonable performance: see Figure 1 for
an example.
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Figure 2: The combined p-value for different r in the cases Π < 1 (top) and
Π > 1 (bottom).

In general we impose integrability conditions on pk. Set

Π = Π(Q) := sup

{
m ∈ [0,∞)

∣∣∣∣E(p−m1 ) =

∫
p−mQ(dp) <∞

}
∈ [0,∞].

By the Lyapunov inequality [12, Theorem 3.2.5], E(p−m1 ) < ∞ for m < Π and
E(p−m1 ) = ∞ for m > Π. The value of Π reflects the asymptotic power of the
p-values; we will discuss this further at the end of this subsection.

The following proposition describes the performance of our merging functions
for various values of r except for the two critical values −1 and −Π. To analyze
the asymptotic behaviour of Pr,K as K →∞, we will write Pr,K ≈ Ka for a ∈ R
if

lim inf
K→∞

Pr,K
Kb

= 0 for b > a and lim
K→∞

Pr,K
Kb

=∞ for b < a a.s. (15)

This means that Pr,K is roughly of the order Ka, as least in the sense of lim inf.
Also recall that for two sequences bK and cK , K = 1, 2, . . . , the symbol bK ∼ cK
means bK/cK → 1.

Proposition 11. For Π > 1, we have:

(i) If r > −1, then

Pr,K → (r + 1)1/r E(pr1)1/r ∈ (0,∞) a.s. (16)

(ii) If −Π < r < −1, then

Pr,K ∼
r

r + 1
K1+1/r E(pr1)1/r →∞ a.s.

(iii) If −∞ < r < −Π, then Pr,K ≈ K1−1/Π →∞.

(iv) If r = −∞, then limK→∞ Pr,K/K
b =∞ in probability for b < 1− 1/Π.

For Π ∈ (0, 1), we have:

(i) If r > −Π, then (16) holds.

(ii) If −1 < r < −Π, then Pr,K ≈ K−1/r−1/Π → 0.

12



(iii) If −∞ < r < −1, then Pr,K ≈ K1−1/Π → 0.

(iv) If r = −∞, then lim infK→∞ Pr,K/K
b = 0 a.s. for b > 1− 1/Π.

The results given in Proposition 11 are roughly summarized in Figure 2,
where r ∈ {−∞,∞} is also allowed. “Finite positive” means that Pr,K converges
to a finite positive number as K → ∞, 0 means that it converges to 0 at least
in the sense of lim inf, “good 0” means that the rate of convergence to 0 is
optimal within the accuracy of (15), ∞ means that it converges to ∞, and
“bad ∞” means the fastest rate of convergence to ∞. In practically interesting
cases, where the distributions of pr1 lie in the domains of attraction of stable
or extremum distributions [12, Theorems 9.3.2 and 9.6.3], lim inf in (15) and
Proposition 11 becomes lim, at least for convergence in probability.

As we mentioned earlier, in the IID situation, the natural interpretation of Π
is that it measures the asymptotic power of the p-values. When p1 is uniformly
distributed on [0, 1], as it is under the null hypothesis, Π = 1. When Π > 1, the
p-values are asymptotically powerless for rejecting the null hypotheses. When
Π < 1, there is some power, as in the case where the density function of p1 is
f(p) := cpc−1 for c ∈ (0, 1), considered by [38]. The general message of this
subsection is that, in the IID case, using the Bonferroni merging function is a
safe option, at least asymptotically, since it performs well in the interesting case
Π < 1 (top of Figure 2); it might be also interesting to note that any merging
function with r < −1 would achieve the same best rate of convergence to 0. The
situation becomes more complicated in the case of dependent p-values, which
will be considered in the next subsection.

5.2 Exchangeable p-values

Now we relax our IID assumption to the more interesting case that the sequence
p1, p2, . . . is exchangeable. This most general symmetry assumption includes
cases of heavy dependence. By de Finetti’s theorem, every exchangeable distri-
bution on [0, 1]∞ is a mixture

∫
Q̃∞ν(dQ̃) of IID distributions Q̃∞; see, e.g.,

[37, Theorem 1.49]. We can interpret ν as the limiting empirical distribution
function of p1, . . . , pK .

The performance of our merging functions depends on the distribution of
Π(Q̃). Applying Proposition 11 in combination with de Finetti’s theorem, we
obtain the following two cases:

1. If ν(Π(Q̃) < 1) = 1, the values r ∈ [−∞,−1) (including Bonferroni)
perform very well. They are in the “good 0” area in Figure 2.

2. If ν(Π(Q̃) > 1) > 0, the values r ∈ [−∞,−1) lead to an infinite expected
combined p-value as K →∞.

Recall that the main motivation for our merging methods is the existence of
unknown, and possibly heavy, dependence. With dependence among p-values,
the case ν(Π(Q̃) > 1) > 0 is not unusual. For instance, in the extreme case of
perfect dependence p1 = · · · = pK , if P(p1 = 0) = 0, then ν(Π(Q̃) =∞) = 1.
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To analyze the influence of the strength of dependence on the performance
of r ∈ [−∞,∞], we consider the following simple example. Let

pk = Φ(Xk), Xk = ρZ +
√

1− ρ2Zk − µ, k = 1, . . . ,K, (17)

where Φ is the standard normal distribution function, Z,Z1, . . . , ZK are IID
standard normal random variables, and µ ≥ 0 and ρ ∈ [0, 1] are constants. In
other words, pk is the p-value resulting from the kth standard one-sided z-test
of the null hypothesis µ = 0 against the alternative µ > 0 using the statistic Xk

from N(−µ, 1) with unknown µ, k = 1, . . . ,K. Note that ρ = 0 corresponds to
the case where p1, . . . , pK are independent, while ρ = 1 corresponds to the case
where p1, . . . , pK are perfectly dependent.

Obviously, the model of (p1, . . . , pK) is exchangeable, and the marginal dis-
tribution Q of (p1, . . . , pK) does not depend on the correlation ρ. For z ∈ R, let

Qz be the distribution of Φ(
√

1− ρ2W +ρz−µ), where W is a standard normal
random variable. Clearly, conditional on Z = z, p1, . . . , pK are IID with distri-
bution Qz. Note that Π(Qz) = 1/(1 − ρ2) > 1 if ρ > 0 (Π(Qz) is computed in
Lemma 15 on page 32 of the Online Supplement). Therefore, in the presence of
positive dependence, we are in Case 2 above and, moreover, ν(Π(Qz) > 1) = 1;
thus some choice of r ≥ −1 may be optimal asymptotically as K → ∞. For
finite K, some simulation results of Pr,K for the model (17) are reported in
Subsection 6.4.

6 Choosing the merging function

In this section we discuss, for simplicity only in the symmetric case, how to
choose a merging function.

6.1 A rule of thumb

First we state a crude rule of thumb for choosing r. Since any method based on
the observed values of p1, . . . , pK would affect the validity of the method (see
Subsection 6.3), we have to rely on prior or side information for a suitable choice
of r. As a rule of thumb, if there is potentially substantial dependence among
the p-values, then we should not use Bonferroni, and the harmonic mean might
be a safer choice. If we are certain that the dependence is really strong, then
the geometric and the arithmetic means might be an even better option. See
Subsection 6.4 for a simulation study illustrating this point.

6.2 Practical issues

A fairly wide family of merging functions is provided in this paper. For a
practitioner, given access to a variety of merging functions, it might be tempting
to try many of them and then pick one of the merging functions that work
well, perhaps the one yielding the smallest p-value. Of course, this is not a
valid approach, and its inadmissibility has been discussed at length in recent
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literature (see, e.g., [44]). A search over various merging functions itself needs
a multiple-testing correction, and the simplest procedure in the context of this
paper would be to apply another merging function in our family to the outputs
of the merging functions that we used in our search. This will be the topic of
Subsection 6.3.

It might be also tempting to divide the available p-values into two parts, to
find a suitable value of r from one part, and then compute the combined p-value
using ar,KMr,K applied to the other part. However, this is not a valid approach
if dependence is present among the p-values. Under possibly heavy dependence,
any peeking into the data is likely to destroy validity. For instance, learning
any of the p-values makes the conditional distribution of the remaining p-values
non-uniform. From the vantage point of Section 5, the fact that we can never
observe any IID components apart from the realized one prevents us from using
interactive methods of adaptation such as the STAR method in [21].

6.3 Combining merging functions

In this subsection we will be interested in valid, necessarily very restrictive,
ways of searching for a good merging function. Namely, we consider the follo-
wing mechanism: for fixed r1, . . . , rm ∈ [−∞,∞] and partition (A1, . . . , Am) of
[0, 1]K , we would like to use

F (p1, . . . , pK) := b

m∑
i=1

Pri,K(p1, . . . , pK) 1Ai
(p1, . . . , pK) (18)

as a merging function, where b is a positive constant. In this case the observed
p-values p1, . . . , pK determine which of the merging functions in our family Pr,K
is used, and the partition (A1, . . . , Am) serves as decision criterion. The value
of b is chosen in such a way that F is a valid merging function.

A natural and simple choice of the decision criterion in (18) is to take the
minimum of the merging functions Pr,K to exploit their power. That is, by
choosing Ai as the region in [0, 1]K where Pri,K(p1, . . . , pK) is the smallest, we
arrive at

F (p1, . . . , pK) := b min
i=1,...,m

Pri,K(p1, . . . , pK). (19)

The constant b in (19) may be seen as the price to pay to exploit the power of
different merging functions, and it is typically larger than 1. Clearly, choosing
b = m leads to a valid merging function in (19), and this is precisely applying
the Bonferroni method on the combined p-values Pr1,K , . . . , Prm,K . Simple ex-
amples show that in some cases a smaller value of b will also lead to a valid
merging function: e.g., if all r1, . . . , rm are similar, then b can be chosen close
to 1.

We consider in detail the simple case where we search over only two values
of r, one of them being −∞, corresponding to the Bonferroni merging function.
We would like to be competitive with the best of the two values, and so combine
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the two merging functions using the Bonferroni merging function. Namely, we
consider the compound Bonferroni-arithmetic (BA) merging function

FBA
K (p1, . . . , pK) := 2 min (K min(p1, . . . , pK), 2p̄) , (20)

where p̄ is the arithmetic mean of p1, . . . , pK , and the compound Bonferroni-
geometric (BG) merging function

FBG
K (p1, . . . , pK) := 2 min (K min(p1, . . . , pK), ep̃) , (21)

where p̃ is the geometric mean of p1, . . . , pK . Obviously, both methods are valid
merging functions. Moreover, it turns out that these two merging functions
are asymptotically precise. In other words, the price to pay for exploiting the
power of both the Bonferroni method and the arithmetic/geometric average is
precisely a factor of 2.

Proposition 12. Both families of merging functions FBA
K and FBG

K , K =
2, 3, . . . , in (20) and (21) are asymptotically precise.

A crucial advantage of FBA
K and FBG

K over the merging functions in our
family ar,KMr,K is that both FBA

K and FBG
K improve greatly on the performance

crudely shown in Figure 2: for FBA
K and FBG

K , in the top plot, we will get “finite
positive”, and in the bottom plot, we will get “good 0”. In particular, neither
FBA
K nor FBG

K is dominated by ar,KMr,K for any r.

6.4 A simulation study

We conduct some simulations for the correlated standard z-tests in model (17)
to compare different merging methods. In Figure 3, we fix µ = 3 and report the
empirical performance for K = 50, 400 of merging methods with various values
of r as well as the compound Bonferroni-geometric method in (21). Other values
of µ give qualitatively similar results. The curves in Figure 3 are based on an
average of 1,000 replications of Pr,K . For the best of visibility, we plot the range
r ∈ [−5, 0] for ρ = 0.1, 0.5 and r ∈ [−5, 2] for ρ = 0.9. For values of r close to
−1, the asymptotically precise choice of the multiplier ar,K in Table 1 explodes
as r approaches −1. To avoid this explosion for finite K, we replace ar,K by
e lnK if ar,K > e lnK and r ≥ lnK/(1 − lnK), and this gives valid merging
functions (cf. (27)); there is still a kink around r = −1 since these choices are
not precise. We make the following observations from Figure 3.

1. If the dependence is light or moderate (ρ = 0.1, 0.5), the Bonferroni met-
hod, as well as other methods based on r < −1, work quite well, and their
power improves when K increases from 50 to 400.

2. In the case of very strong dependence (ρ = 0.9), the geometric averaging
method and the arithmetic averaging method perform quite well. Notably,
the performance of the Bonferroni method and other methods with r < −1
gets worse when K increases from 50 to 400.
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3. The compound BG method generally performs quite well in all cases as
it is often only slightly worse on average than the best of the two base
methods.

7 Directions of further research

Perhaps the most important direction of further research is to find practically
useful applications, in multiple testing of a single hypothesis or testing multiple
hypotheses, for our methods of combining p-values. The Bonferroni method
of combining a set of p-values works very well when experiments are almost
independent, while it produces unsatisfactory results under heavy dependence,
e.g., if all p-values are approximately equal. Our methods are designed to work
for intermediate situations. Promising results have been obtained using the
harmonic mean [45], but other merging functions proposed in this paper also
deserve careful experimental study.

Our emphasis has been on finding valid methods of combining p-values, and
we have just started exploration of their efficiency; the results of Section 5 are
asymptotic and crude. A natural next step is to explore convergence of the
combined p-values in distribution; such results would be still asymptotic but
more precise. The price to pay will be the need to impose various conditions on
the distribution of the p-values.

The main application of results about efficiency of various combination met-
hods is choosing a suitable method. Subsection 6.3 is only a first step in this
direction. Much wider families of potential merging functions deserve to be ex-
plored. In particular, finding the optimal value of b in merging functions of the
form (18) is an interesting open problem.

This paper concentrates on the symmetric case, where the merging function
is a symmetric function of p1, . . . , pK . However, the weighted case, as in
Section 4, is important in many applications because the quality of different
p-values can be very different. It would be of much interest to study efficient
ways of assigning weights to the p-values using prior or side information.
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[32] Giovanni Puccetti and Ludger Rüschendorf. Sharp bounds for sums of
dependent risks. Journal of Applied Probability, 50:42–53, 2013.
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A Proofs of main results

This appendix contains proofs of our main results. All these proofs are based
on known results in robust risk aggregation. For a > 0, let U(a) be the set of
all random variables distributed uniformly over the interval [0, a], a ≥ 0; we can
regard U as an abbreviation for U(1).

Proof of Lemma 1

Part “if” of (a): Suppose qε(F ) ≥ ε for all ε ∈ (0, 1). Consider arbitrary
U1, . . . , UK ∈ U . We have qε(F (U1, . . . , UK)) ≥ ε for all ε ∈ (0, 1). By the
definition of left quantiles, P(F (U1, . . . , UK) < ε) ≤ ε. It follows that, for all
δ ∈ (0, 1− ε),

P(F (U1, . . . , UK) ≤ ε) ≤ P(F (U1, . . . , UK) < ε+ δ) ≤ ε+ δ,

which implies
P(F (U1, . . . , UK) ≤ ε) ≤ ε,

since δ is arbitrary. Therefore, F is a merging function.
Part “only if” of (a): Suppose F is a merging function. Let U1, . . . , UK ∈

U and ε ∈ (0, 1). We have P(F (U1, . . . , UK) ≤ ε) ≤ ε. By the definition of right
quantiles, q+

ε (F (U1, . . . , UK)) ≥ ε. It follows that, for all δ ∈ (0, ε),

qε(F (U1, . . . , UK)) ≥ q+
ε−δ(F (U1, . . . , UK)) ≥ ε− δ,

which implies qε(F (U1, . . . , UK)) ≥ ε since δ is arbitrary.
Part “if” of (b): Suppose qε(F ) = ε for all ε ∈ (0, 1). By (a), F is a

merging function. For all ε, δ ∈ (0, 1), there exist U1, . . . , UK ∈ U such that
qε(F (U1, . . . , UK)) ∈ [ε, ε + δ), which implies P(F (U1, . . . , UK) ≤ ε + δ) ≥ ε.
Since δ is arbitrary, we have

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} = ε,

and thus F is precise.
Part “only if” of (b): Suppose F is a precise merging function. Since F

is a merging function, by (a) we have qε(M) ≥ ε for all ε ∈ (0, 1). Suppose, for
the purpose of contradiction, that qε(M) > ε for some ε ∈ (0, 1). Then, there
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exists δ ∈ (0, 1− ε) such that qε(F (U1, . . . , UK)) > ε+ δ for all U1, . . . , UK ∈ U .
As a consequence, we have

P(F (U1, . . . , UK) ≤ ε+ δ/2) ≤ P(F (U1, . . . , UK) < ε+ δ) ≤ ε.

Therefore,

sup {P(F (U1, . . . , UK) ≤ ε+ δ/2) |U1, . . . , UK ∈ U} < ε+ δ/2,

contradicting F being precise.
In all proofs below, for statements that have a weighted version in Section 4,

namely Theorem 2 and Propositions 4 and 5, we present a proof of the corre-
sponding weighted version, which is stronger.

Proof of Theorem 2w

Without loss of generality we can, and will, assume that φ is strictly increasing.
Indeed, if φ is strictly decreasing, we can redefine φ := −φ and ψ(u) := ψ(−u)
and notice that the statement of the theorem for new φ and ψ will imply the
analogous statement for the original φ and ψ.

Define an accessory function Φ : (0, 1) → [−∞,∞] by Φ(ε) = 1
ε

∫ ε
0
φ(u)du.

Fix ε ∈ (0, 1). Since φ is integrable, Φ(ε) is finite.
Known results from the literature on robust risk aggregation can be applied

to random variables Xk := φ(Uk), where Uk ∈ U ; notice that the distribution
function of Xk is ψ:

P(Xk ≤ x) = P(φ(Uk) ≤ x) = P(Uk ≤ ψ(x)) = ψ(x).

Theorem 4.6 of [1] gives the following relation:

qε(Mφ,w) = inf

{
q1

(
ψ

(
K∑
k=1

wkφ(Vk)

))∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
. (22)

Since

q1 (w1φ(V1) + · · ·+ wKφ(VK)) ≥ E (w1φ(V1) + · · ·+ wKφ(VK)) = Φ(ε)

for V1, . . . , VK ∈ U(ε), we have qε(Mφ,w) ≥ ψ(Φ(ε)).

Proof of Proposition 3

The case r = ∞ is trivial, and we focus on r ∈ (−1,∞). Let φ(u) = ur, which
gives Φ(ε) = εr/(r + 1), in the notation of the previous proof. Evaluating the
term (12) in (11), we obtain

ψ

(
1

ε

∫ ε

0

φ(u)du

)
=

{
ε/e if r = 0

(r + 1)−1/rε otherwise.
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This shows that (r + 1)1/rMr,K is indeed a merging function.
Using Corollary 3.4 of [7], we have

lim
K→∞

φ(qε(Mr,K))

Φ(ε)
= 1,

leading to
lim
K→∞

qε(Mr,K) = ε(r + 1)−1/r. (23)

It follows that, for a < (r + 1)1/r,

lim
K→∞

qε(aMr,K) < ε

and so, by Lemma 1, aMr,K is not a merging function for K large enough.

Proof of Proposition 4w

Let M = (r + 1)1/rMr,w. Using (22) and Theorem 2w, we have, for ε ∈ (0, 1):

(qε(Mr,w))
r

= inf

{
q1

(
K∑
k=1

wkV
r
k

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
≥ εr

1 + r
(24)

if r > 0,

(qε(Mr,w))
r

= sup

{
q+
0

(
K∑
k=1

wkV
r
k

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
≤ εr

1 + r
(25)

if r < 0, and

qε(Mr,w) = exp

(
inf

{
q1

(
K∑
k=1

wk lnVk

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

})
≥ ε

e
(26)

if r = 0. By Lemma 1, M is a precise merging function if and only if the
inequality in (24)–(26) is an equality for all ε ∈ (0, 1).

Fix ε ∈ (0, 1) and r ∈ (−1,∞). For k = 1, . . . ,K, let Fk be the distribution of
wkV

r
k where Vk ∈ U(ε). Using the terminology of [42], notice that the inequality

in (24)–(26) is an equality if and only if (F1, . . . , FK) is jointly mixable due to
a standard compactness argument (see [42, Proposition 2.3]). Therefore, we
can first settle the cases r = 0 and r < 0, as in these cases the supports of
F1, . . . , FK are unbounded on one side, and (F1, . . . , FK) is not jointly mixable
(see [42, Remark 2.2]).

Next assume r > 0. Since F1, . . . , FK have monotone densities on their
respective supports, by Theorem 3.2 of [42], (F1, . . . , FK) is jointly mixable if
and only if the “mean condition”

wεr ≤ εr

1 + r
≤ εr − wεr

is satisfied. This is equivalent to w ≤ 1
1+r ≤ 1 − w and, therefore, to the

conjunction of w ≤ 1/2 and r ∈ [ w
1−w ,

1−w
w ]. This completes the proof.
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Proof of Proposition 5w

Notice that, for each k = 1, . . . ,K, the distribution of wkU
r
k , where Uk ∈ U , has

a decreasing density on its support. Therefore, we can apply Corollary 4.7 of
[18], which gives

inf {qε (w1U
r
1 + · · ·+ wKU

r
K) |U1, . . . , UK ∈ U} = max

(
wεr,

εr

1 + r

)
.

Simple algebra leads to

qε(Mr,K) = max

(
w,

1

1 + r

)1/r

ε,

and by Lemma 1, M is a precise merging function.

Proof of Proposition 6

First, we note that as limr→0(r + 1)1/r = e, we know aGK ≤ e from Proposition
3. Moreover, by letting r → 0 in (23), we know that aGK → e.

Our next goal is to obtain the precise value of qε(M0,K). Set

bK := sup
{
q+
0 (−(lnU1 + · · ·+ lnUK))

∣∣U1, . . . , UK ∈ U
}

= sup
{
q+
0 (−(lnV1 + · · ·+ lnVK) +K ln ε)

∣∣V1, . . . , VK ∈ U(ε)
}
.

It is easy to see that

qε(M0,K) = exp

(
inf

{
q1

(
lnV1 + · · ·+ lnVK

K

) ∣∣∣∣V1, . . . , VK ∈ U(ε)

})
= exp

(
− sup

{
q+
0

(
− lnV1 + · · ·+ lnVK

K

) ∣∣∣∣V1, . . . , VK ∈ U(ε)

})
= exp (−bK/K + ln ε)

= ε exp(−bK/K).

It is clear that ebK/KM0,K is a precise merging function, and bK/K → 1.
Since − lnU has the standard exponential distribution for U ∈ U and, the-

refore, a decreasing density on R, we can apply Theorem 3.2 of [1] (essentially
Theorem 3.5 of [41]) to arrive at

bK = −(K − 1) ln(1− (K − 1)cK)− ln cK ,

where cK is the unique solution to (13) (see [41, Corollary 4.1]). Using (13), we
can write

bK/K = − ln cK − (K − 1)(1−KcK).

Using aGK = ebK/K gives the desired result.
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Proof of Theorem 7

We will apply Theorem 4.2 of [6] in our situation where the function φ (and,
therefore, ψ as well) in (7) is decreasing. Letting Xk := φ(pk) and using the
notation m+ (used in Theorem 4.2 of [6]), we have, by the definition of m+,

P

(
K∑
k=1

Xk < s

)
≥ m+(s),

P

(
1

K

K∑
k=1

φ(pk) < s/K

)
≥ m+(s),

P (Mφ,K(p1, . . . , pK) > ψ(s/K)) ≥ m+(s),

P (Mφ,K(p1, . . . , pK) ≤ ψ(s/K)) ≤ 1−m+(s).

The lower bound on m+(s) given in Theorem 4.2 of [6] involves 1−F (x), where
F is the common distribution function of Xk, and in our current context we
have:

1− F (x) = P(Xk > x) = P(φ(pk) > x) = P(pk < ψ(x)) = ψ(x).

The last inequality and chain of equalities in combination with Theorem 4.2 of
[6] give

P (Mφ,K(p1, . . . , pK) ≤ ψ(s/K)) ≤ K inf
r∈[0,s/K)

∫ s−(K−1)r

r
ψ(x)dx

s−Kr
.

Setting ε := ψ(s/K) ∈ [ψ(∞), ψ(0)], so that it is essential that ψ(∞) = 0, we
obtain, using s = Kφ(ε),

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤ K inf
r∈[0,φ(ε))

∫Kφ(ε)−(K−1)r

r
ψ(x)dx

(φ(ε)− r)K
.

Setting t := φ(ε)− r and renaming x to u, this can be rewritten as (14).

Proof of Proposition 8

The case r = −∞ is trivial, and we focus on r ∈ (−∞,−1). By Theorem 7
applied to φ(u) := ur, r < −1, we have

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤
∫Kφ(ε)

0
ψ(u)du

φ(ε)
=

r

r + 1
K1+1/rε.

This shows that r
r+1K

1+1/rMr,K is indeed a merging function.
We next show a simple property of a precise merging function via general

averaging. Define the following constant:

br,K :=

(
1

K
sup{q+

0 (Ur1 + · · ·+ UrK)

∣∣∣∣U1, . . . , UK ∈ U}
)−1/r

.

It is clear that br,K ≥ 1 for r < 0.
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Lemma 13. For r < 0, the function br,KMr,K is a precise merging function.

Proof. By straightforward algebra and Theorem 4.6 of [1],

qε(br,KMr,K) = br,K inf {q1{Mr,K(V1, . . . , VK)} |V1, . . . , VK ∈ U(ε)}
= br,K inf {εq1{Mr,K(U1, . . . , UK)} |U1, . . . , UK ∈ U}

= br,Kε

(
1

K
sup

{
q+
0 (Ur1 + · · ·+ UrK)

∣∣U1, . . . , UK ∈ U
})1/r

= ε.

By Lemma 1, br,KMr,K is a precise merging function.

To construct precise merging functions, it remains to find values of br,K .
Unfortunately, for r < 0 no analytical formula for br,K is available. There is an
asymptotic result available in [2], which leads to the following proposition.

Proposition 14. For r ∈ (−∞,−1),

lim
K→∞

br,K
K1+1/r

=
r

r + 1
.

Proof. The quantity ∆
Fd

in [2], defined as

∆
Fd

:= lim
α→1

sup {qα(Ur1 + · · ·+ UrK) |U1, . . . , UK ∈ U(α)}
K(1− α)r

,

satisfies

∆
Fd

=
1

K
sup

{
q+
0 (Ur1 + · · ·+ UrK)

∣∣U1, . . . , UK ∈ U
}

= b−rr,K .

Using Proposition 3.5 of [2], we have, for r < −1, by substituting β := −1/r

in (3.25) of [2] and ∆
Fd

= b−rr,K ,

lim
K→∞

b−rr,K
K−r−1

=

(
r

r + 1

)−r
,

and this gives the desired result.

The claim on the asymptotic precision in Proposition 8 immediately follows
from Lemma 13 and Proposition 14.

Proof of Proposition 9

Let us first find the smallest value of the coefficient r
r+1K

1+1/r in Proposition 8.
Setting the derivative in r of the logarithm of this coefficient to 0, we obtain a
linear equation whose solution is

r =
lnK

1− lnK
. (27)
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Plugging this into the coefficient gives e lnK. Notice that r defined by (27)
satisfies r < −1 and apply the inequality Mr,K ≤M−1,K , a special case of (10).
Hence, e lnKM−1,K is a merging function, and aHK ≤ e lnK follows from the
fact that aHKM−1,K is a precise merging function, which we prove below.

Using the notation in Lemma 13, we need to show aHK = b−1,K , and we shall
use Corollary 3.7 of [43]. Write

H(t) :=
K − 1

1− (K − 1)t
+

1

t
=

1

t(1− (K − 1)t)
, t ∈ [0, 1/K].

By Corollary 3.7 of [43], we have

b−1,K =
1

K
sup

{
q+
0 (U−1

1 + · · ·+ U−1
K )

∣∣U1, . . . , UK ∈ U
}

=
1

K
H(xK) =

1

KxK(1− (K − 1)xK)

where xK solves the equation∫ 1/K

x

H(t)dt =

(
1

K
− x
)
H(x), x ∈ [0, 1/K).

Plugging in the expression for H and rearranging the above equation, we obtain

1−Kx
Kx(1− (K − 1)x)

=

∫ 1/K

x

(
K − 1

1− (K − 1)t
+

1

t

)
dt

=

∫ (K−1)/K

(K−1)x

1

1− y
dy +

∫ 1/K

x

1

t
dt

= ln(1− (K − 1)x)− lnx. (28)

The uniqueness of the solution xK to (28) can be easily checked, and it is
a special case of Lemma 3.1 of [18]. Writing y = 1−Kx

x > 0, (28) reads as
y

(y+1)K/(y+K) = ln(y + 1). Rearranging the terms gives

y2 = K((y + 1) ln(y + 1)− y), (29)

which admits a unique solution, yK = 1−KxK

xK
. Therefore,

b−1,K =
1

KxK(1− (K − 1)xK)
=

(yK +K)2

(yK + 1)K
,

and hence aHK = b−1,K .
Next we analyze the asymptotic behaviour of aHK as K → ∞. Using ln(y +

1) ≥ y − y2/2 for y ≥ 0, we can see that (29) implies the inequality

y2 ≥ K

2
y2 − K

2
y3,
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which leads to 2 ≥ K(1− y). Hence, we have lim infK→∞ yK ≥ 1.
Notice that (y+1) ln(y+1)−y is a strictly increasing function of y ∈ (0,∞).

Using lim infK→∞ yK ≥ 1, we obtain that

lim inf
K→∞

y2
K ≥ K(2 ln 2− 1).

Therefore, limK→∞ yK = ∞. Applying logarithms to both sides of (29) and
taking a limit in their ratio, we obtain

1 = lim
K→∞

2 ln yK

lnK + ln(yK + 1) + ln
(

ln(yK + 1)− yK
yK+1

) = lim
K→∞

2 ln yK
lnK + ln yK

,

and hence ln yK/ lnK → 1 as K →∞. Using (29) again, we have

1 = lim
K→∞

y2
K

K((yK + 1) ln(yK + 1)− yK)
= lim
K→∞

y2
K

K(yK ln yK)
= lim
K→∞

yK
K lnK

.

Therefore, we have

lim
K→∞

aHK
lnK

= lim
K→∞

(yK +K)2

(yK + 1)K lnK
= lim
K→∞

(K lnK)2

(K lnK)K lnK
= 1.

This completes the proof.

Proof of Proposition 10

Let us check that for F := aMr,K the following statements are equivalent:

(a) F is a merging function;

(b) (5) holds for some ε ∈ (0, 1);

(c) qε(F ) ≥ ε for some ε ∈ (0, 1).

The implication (a)⇒ (b) holds by definition.
To check (b)⇒ (c), let us assume (b). Since P(X ≤ ε) ≤ ε implies q+

ε (X) ≥ ε
for any random variable X,

inf
{
q+
ε (F (U1, . . . , UK))

∣∣U1, . . . , UK ∈ U
}
≥ ε.

Using Lemma 4.5 of [1],

qε(F ) = inf
{
q+
ε (F (U1, . . . , UK))

∣∣U1, . . . , UK ∈ U
}
,

and hence (c) follows.
It remains to check (c)⇒ (a). For any ε ∈ (0, 1), by straightforward algebra

and Theorem 4.6 of [1],

qε(F ) = inf {q1(F (V1, . . . , VK)) |V1, . . . , VK ∈ U(ε)}
= ε inf {q1(F (U1, . . . , UK)) |U1, . . . , UK ∈ U} .

Therefore, to check qε(F ) ≥ ε for all ε ∈ (0, 1), one only needs to check the
inequality for one ε ∈ (0, 1). By Lemma 1, F is a merging function.

This completes the proof of the first part of Proposition 10, and the second
part can be proved similarly.
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Proof of Proposition 11

First we consider the integrable case r > −Π. By the Marcinkiewicz strong law
of large numbers [12, Theorem 6.7.1] we have

1

K

K∑
k=1

prk → E(pr1) a.s.

This implies parts (i) and (ii) of the case Π > 1 and part (i) of the case Π < 1.
Since P(p1 > 0) = 1 unless Π = 0, this also gives the “finite positive” entries in
Figure 2.

Now let us consider the non-integrable case r < −Π. In this case −Π/r ∈
[0, 1) and we can apply Marcinkiewicz’s strong law, assuming Π > 0 (the simple
case Π = 0 should be considered separately). We have E((pr1)−Π/r−ε) < ∞ for
any ε > 0, and so, by Marcinkiewicz’s law (applicable when ε < −Π/r),∑K

k=1 p
r
k

K−r/Π+ε
→ 0 a.s.

for any ε > 0. This implies(∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r−ε →∞ a.s. (30)

for any ε > 0. On the other hand, we have E((pr1)−Π/r+ε) = ∞ for any ε > 0,
and so, by the other part of Marcinkiewicz’s law (applicable when ε < 1 + Π/r),∑K

k=1 p
r
k

K−r/Π−ε
→ 0 a.s.

fails for any ε > 0. Therefore,(∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r+ε
→∞ a.s.

fails for any ε > 0. This implies that

lim inf
K→∞

(∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r+ε
= 0 (31)

with a positive probability for any ε > 0. Kolmogorov’s zero-one law [12, Theo-
rem 1.5.1] allows us to replace “with a positive probability” by “a.s.” Combining
(30) and (31) gives part (iii) of the case Π > 1 and parts (ii) and (iii) of the
case Π < 1.

It remains to consider the case r = −∞ (Bonferroni). First suppose Π > 1.
For any b ∈ (0, 1 − 1/Π) and B > 0, take c = (1/(1 − b),Π), and note that
E(p−c1 ) <∞. We have

P(Pr,K ≤ BKb) = P(∃k ∈ {1, . . . ,K} : pk ≤ BKb−1)
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≤ K P(p1 ≤ BKb−1)

= K P(p−c1 ≥ (BKb−1)−c)

≤ K E(p−c1 )/(BKb−1)−c = E(p−c1 )BcK1−(1−b)c → 0.

This gives Pr,K/K
b → ∞ in probability and, therefore, part (iv) of the case

Π > 1. Finally, suppose Π < 1. Note that for any r < −1,

P−∞,K = K min
k∈{1,...,K}

pk ≤ KMr,K(p1, . . . , pK) =
r + 1

r
K−1/rPr,K .

For b > 1− 1/Π, we can take r < −1 small enough such that b+ 1/r > 1− 1/Π,
and obtain by using (iii),

P−∞,K/K
b ≤ r + 1

r
Pr,K/K

b+1/r → 0 a.s.

Proof of Proposition 12

We first analyze the compound BA method. To show that the family FBA
K is

asymptotically precise, it suffices to show that for some ε ∈ (0, 1),

lim sup
K→∞

(
sup

{
P(FBA

K (U1, . . . , UK) ≤ ε)
∣∣U1, . . . , UK ∈ U

})
= ε. (32)

To show (32), fix ε ∈ (0, 1) and an even number K. Set δ := ε/(2K). Let
A1, . . . , AK , B be disjoint events with P(Aj) = δ, j = 1, . . . ,K, and P(B) =
(K − 2)δ. Let V, V1, . . . , VK ,W1, . . . ,WK be independent random variables,
between themselves and of A1, . . . , AK , B, such that, for j = 1, . . . ,K, Vj is
uniformly distributed on [0, δ], V is uniformly distributed on [δ, (K − 1)δ], and
Wj is uniformly distributed on [(K − 1)δ, 1].

Define the random variables

pj := 1B V + 1Aj Vj + 1(B∪Aj)c Wj

for an odd number j ∈ {1, . . . ,K}, and

pj := 1B(Kδ − V ) + 1Aj Vj + 1(B∪Aj)c Wj

for an even number j ∈ {1, . . . ,K}. We can easily check that p1, . . . , pK are

uniformly distributed on [0, 1]. Note that 2
K

∑K
k=1 pk 1B = Kδ 1B , and, by

writing A :=
⋃n
j=1AK , min(p1, . . . , pK) 1A ≤ δ 1A. Therefore,

P
(
FBA
K (p1, . . . , pK) ≤ ε

)
= P [min(K min(p1, . . . , pK), 2p̄) ≤ Kδ]
≥ P(A ∪B) = (2K − 2)δ = ε− ε/K.

Hence, (32) holds, and the family FBA
K is asymptotically precise.

The case of the compound BG method is similar, although an explicit con-
struction is more complicated. We fix ε ∈ (0, 1/2) and let δ := ε/K. Note that,
for a uniform random variable U on [0, 1], we have

E (lnU | U ∈ [0, ε]) = ln ε− 1.
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For K ≥ 3, ln δ < ln ε− 1, and there exists a number t(K) > 0 such that

E (lnU | U ∈ [δ, ε− t(K)]) = ln ε− 1.

Clearly, t(K)→ 0 as K →∞. Next, take an arbitrary η > 0. By [7, Corollary
3.4], there exists K0 ∈ {1, 2, . . . } such that for K > K0, there exist uniform
random variables U1, . . . , UK on [δ, ε− t(K)] satisfying

q1−η(lnU1 + · · ·+ lnUK) < E(lnU1 + · · ·+ lnUK) = K(ln ε− 1).

In other words,
P(eŨ ≤ ε) ≥ 1− η,

where Ũ is the geometric mean of U1, . . . , UK .
Let A1, . . . , AK , B be disjoint events with P(Aj) = δ, j = 1, . . . ,K, and

P(B) = ε − t(K). Further, let V1, . . . , VK ,W1, . . . ,WK be random variables,
independent between themselves and of U1, . . . , UK and A1, . . . , AK , B, and
such that, for j = 1, . . . ,K, Vj is uniformly distributed on [0, δ] and Wj is
uniformly distributed on [ε− t(K), 1].

Define the following random variables, for j = 1, . . . ,K:

pj := 1B Uj + 1Aj
Vj + 1(B∪Aj)c Wj .

We can easily check that p1, . . . , pK are uniformly distributed on [0, 1]. Note
that

P(ep̃ ≤ ε | B) = P(eŨ ≤ ε | B) ≥ 1− η.

By setting A :=
⋃n
j=1AK , we have min(p1, . . . , pK) 1A ≤ δ 1A. Therefore,

P
(
FBG
K (p1, . . . , pK) ≤ 2ε

)
= P (min(K min(p1, . . . , pK), ep̃) ≤ ε)
≥ P(A) + P(B)(1− η) = ε+ (ε− t(K))(1− η).

Since η is arbitrary and t(K)→ 0 as K →∞, we know that

lim
K→∞

(
sup

{
P(FBG

K (U1, . . . , UK) ≤ 2ε)
∣∣U1, . . . , UK ∈ U

})
= 2ε,

and so the family FBG
K is asymptotically precise.

A lemma on moments of p-values from z-tests

Lemma 15. Let Z be a standard normal random variable and z ∈ R. For all
σ > 0, E((Φ(σZ + z))r) < ∞ if and only if r > −1/σ2 or both r = −1/σ2 and
z > 0.

Proof. It suffices to investigate the case r < 0. In this case, only small values of
Φ(σZ + z) matter. To analyze whether

E((Φ(σZ + z))r) =

∫ ∞
−∞

(Φ(σx+ z))r
1√
2π
e−x

2/2dx (33)
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Algorithm 1 Generalized Bonferroni–Holm procedure

Require: A significance level ε > 0 and parameter r < −1 (or, w.l.o.g., (34)).
Require: A sequence of p-values p1, . . . , pK ordered as p(1) ≤ · · · ≤ p(K).

for k = 1, . . . ,K do
reject := true

I := {k}
for i = K, . . . , 1, 0 do

if r
r+1 |I|

1+1/r
Mr,|I|(p(I)) > ε then

reject := false

end if
I := I ∪ {i}

end for
if reject = true then

reject Hk

end if
end for

is finite, it suffices to look at the limiting behavior of Φ(σx + z) as x → −∞.

L’Hôpital’s rule gives Φ(y) ∼ − 1
y

1√
2π
e−y

2/2 as y → −∞. Hence, we have, for

some constant C > 0, as x→ −∞,

(Φ(σx+ z))re−x
2/2 ∼

(
− 1

σx+ z

1√
2π

)r
e−r(σx+z)2/2−x2/2

∼ Cx−re−(rσ2+1)x2/2+rσzx.

Therefore, if rσ2 + 1 > 0, the integral in (33) is finite, and if rσ2 + 1 < 0, the
integral in (33) is infinite. If rσ2 + 1 = 0, then z ≤ 0 leads to an infinite integral
in (33), and z > 0 leads to a finite integral in (33).

B Application to testing multiple hypotheses

In this section we apply the results of this paper concerning multiple testing of
a single hypothesis to testing multiple hypotheses. Namely, we will arrive at a
generalization of the Bonferroni–Holm procedure [14]. Fix a parameter

r ≤ lnK

1− lnK
(34)

(cf. (27)); the Bonferroni–Holm case is r := −∞. We concentrate on the range
(34) in order to be able to write explicit coefficients in front of Mr,k, but our
argument is applicable to all values of r.

Suppose pk is a p-value for testing a composite null hypothesis Hk, meaning
that, for any ε ∈ (0, 1), P(pk ≤ ε) ≤ ε under Hk. For I ⊆ {1, . . . ,K}, let HI be
the hypothesis

HI := (∩k∈IHk) ∩
(
∩k∈{1,...,K}\IHc

k

)
,

33



Algorithm 2 Generalized Bonferroni–Holm procedure for adjusting p-values

Require: A parameter r < −1 (or, w.l.o.g., (34)).
Require: A sequence of p-values p1, . . . , pK ordered as p(1) ≤ · · · ≤ p(K).

for k = 1, . . . ,K do
p∗k := 0
I := {k}
for i = K, . . . , 1, 0 do

if r
r+1 |I|

1+1/r
Mr,|I|(p(I)) > p∗k then

p∗k := r
r+1 |I|

1+1/r
Mr,|I|(p(I))

end if
I := I ∪ {i}

end for
end for

where Hc
k is the complement of Hk.

Fix a significance level ε. Let us reject HI when

r

r + 1
|I|1+1/r

Mr,|I|(pI) ≤ ε,

where pI is the vector of pk for k ∈ I; by Proposition 3, the probability of error
will be at most ε. If we now reject Hk when all HI with I ⊇ {k} are rejected,
the family-wise error rate (FWER) will be at most ε. This gives the procedure
described as Algorithm 1, in which (k1, . . . , kK) stands for a fixed permutation
of {1, . . . ,K} such that pk1 ≤ · · · ≤ pkK .

An alternative representation of the generalized Bonferroni–Holm procedure
given as Algorithm 1 is in terms of adjusting the p-values p1, . . . , pK to new
p-values p∗1, . . . , p

∗
K that are valid in the sense of the FWER: we are guaranteed

to have P(mink∈I p
∗
k ≤ ε) ≤ ε for all ε ∈ (0, 1), where I is the set of the indices

k of the true hypotheses Hk. The adjusted p-values can be defined as

p∗k := max
k∈I⊆{1,...,K}

r

r + 1
|I|1+1/r

Mr,|I|(pI)

and computed using Algorithm 2.
If we do not insist on controlling the FWER, we can still use our ways of

combining p-values instead of Bonferroni’s in more flexible procedures for testing
multiple hypotheses, such as those described in [10].
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