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Abstract

There is a useful counterpart of conformal prediction for e-values, called con-
formal e-prediction. Conformal prediction can serve as basis for testing the
assumption of exchangeability, leading to conformal testing. Similarly, confor-
mal e-prediction can also serve as basis for testing. The resulting conformal
e-testing looks very different from but inherits some strengths of conformal
testing; it even has some advantages over conformal testing. In this paper we
discuss systematically both strengths and limitations of conformal e-testing.

Contents

1 Introduction 1

2 Conformal e-prediction 2

3 Conformal e-testing in the online setting 4

4 Conformal e-testing in the batch setting 5

5 The conformal CUSUM e-procedure: validity 8

6 The conformal CUSUM e-procedure: efficiency 9

7 Conclusion 14

References 16

A Proofs for Sect. 5 17

B Proof for Sect. 6 19



1 Introduction

A useful application of conformal prediction is conformal testing, which is a
technique for testing the assumption of exchangeability (or another online com-
pression model). Conformal e-prediction is a modification of conformal pre-
diction obtained by replacing the notion of a p-value by that of an e-value; it
is reviewed in the sister article [15]. (It may be natural to refer to conformal
testing as conformal p-testing, but we will never use this term.)

An important advantage of conformal prediction over conformal e-prediction
is that its strong property of validity found in [13, Theorem 1] allows us to test
the assumption of exchangeability. This strong property can be stated as the
independence of the smoothed conformal p-values output at different steps,
and to test exchangeability, we can bet against the conformal p-values being
independent and uniformly distributed. This led to the introduction in 2003
[17] of conformal test martingales. The validity of conformal test martingales
as means of testing exchangeability shows, e.g., in Ville’s theorem [12, p. 100]:
under exchangeability, the probability that a given conformal test martingale
S ever exceeds a fixed threshold c > 1 is at most 1/c. For example, we might
feel justified in rejecting the hypothesis of exchangeability when S exceeds 100,
since the probability of this event is at most 1%.

In general and informally, validity is the requirement that our testing meth-
ods should give false evidence against exchangeability (in the context of this
paper) only with low probability. It will appear in various guises in this paper.
Under the restriction of validity, we would also like our procedures to be efficient
at discovering evidence against exchangeability. For a long time, nothing was
known about the efficiency of conformal test martingales, and first results about
their efficiency appeared in 2019 (see [14]); this is a major topic of [16, Part III].

In this paper we discuss conformal e-testing systematically and compare it
with conformal testing. It turns out that, similarly to the case of conformal
e-prediction [15], conformal e-testing can often emulate strengths of conformal
testing. Moreover, conformal e-testing has some advantages of its own over
conformal testing.

We start the main part of the paper in Sect. 2 by defining conformal
e-prediction in a way adapted to the use in conformal e-testing. In the
following Sect. 3 we introduce conformal e-testing and explore its validity.
Instead of conformal test martingales, we obtain what we call “conformal
e-pseudomartingales”, and our main finding here is negative: conformal e-
pseudomartingales can violate badly the property of validity expressed by Ville’s
inequality. While in Sect. 3 we use the online setting, which is standard in this
area, in Sect. 4 we use a more limited batch setting, which allows us to establish
results about both validity and efficiency of conformal e-testing.

In Sections 5 and 6 we discuss “multistage” ways of testing the exchangeabil-
ity assumption, concentrating on the standard CUSUM procedure used on top
of conformal e-prediction, which we call the “conformal CUSUM e-procedure”.
Section 5 is devoted to the validity of the conformal CUSUM e-procedure: we
show that under exchangeability it raises false alarms with a frequency deter-
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mined by its parameter (and it can be made as low as we want). This property
is deduced from the analogous property of what we call the reverse Shiryaev–
Roberts procedure. In this section we also give an example showing an un-
desirable property of the Shiryaev–Roberts procedure, standard or reverse. In
Sect. 6 we discuss a property of efficiency of the conformal CUSUM e-procedure.
While Sect. 5 shows that conformal e-testing inherits some strengths of confor-
mal testing, Sect. 6 demonstrates an advantage of conformal e-testing.

Section 7 concludes and lists some directions of further research.

2 Conformal e-prediction

The task of conformal e-prediction, and predictive machine learning in general,
is to predict the label of a test object x given a training set z1, . . . , zn whose
elements are labelled objects zi = (xi, yi). What distinguishes conformal (e-)
prediction is that for each potential label y for the test object x it provides a non-
negative number f(z1, . . . , zn, (x, y)) (we usually drop the internal parentheses)
reflecting the plausibility of y being the true label of x.

The objects xi are drawn from the object space X and the labels yi from
the label space Y; both are required to be non-empty measurable spaces. The
observations z = (x, y) are drawn from the Cartesian product (the observation
space) Z := X ×Y. In this paper we will also be interested in the case where
Z is unstructured (not a Cartesian product, which can be embedded into the
structured case by setting X or Y to a one-element space).

We will use the notation X+ := ∪∞
n=1X

n for the set of all non-empty finite
sequences of elements of X. If X is a measurable space, X+ is also a measurable
space.

A nonconformity e-measure is a measurable function A : Z+ → [0,∞)+ that
maps every finite sequence (z1, . . . , zm), m ∈ {1, 2, . . . }, to a finite sequence
(α1, . . . , αm) of the same length such that

1

m

m∑
i=1

αi ≤ 1 (1)

and that satisfies the property of equivariance: for any m and any permutation
π of {1, . . . ,m},

(α1, . . . , αm) = A(z1, . . . , zm) =⇒ (απ(1), . . . , απ(m)) = A(zπ(1), . . . , zπ(m)).

(We sometimes refer to the αi as nonconformity e-scores.) The corresponding
conformal e-predictor f : Z+ → [0,∞) is defined as

f(z1, . . . , zn, x, y) := αn+1, where (α1, . . . , αn, αn+1) := A(z1, . . . , zn, (x, y)).

For a training set z1, . . . , zn and a test object x, the full prediction for x ac-
cording to a conformal e-predictor f is given by the family of potential conformal
e-values

(f(z1, . . . , zn, x, y) | y ∈ Y) .
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We can make a confident prediction for x if the potential conformal e-values are
large for all y ∈ Y except for one.

A nonconformity e-measure and the corresponding conformal e-predictor are
admissible if we always have “=” in place of “≤” in (1) in its definition. Testing
procedures based on nonconformity e-measures that are not admissible can be
improved.

Now let us state what we regard as the main property of validity of con-
formal e-prediction (for more information, see [15, Sect. 3]). Let Z1, Z2, . . . be
the random observations, i.e., the random elements whose realizations are the
observed z1, z2, . . . . In general, (X,Y ) or Z are random observations, i.e., ran-
dom elements taking values in the observation space Z. Remember that a finite
sequence of random elements is exchangeable if its joint distribution does not
change if it is permuted (and an infinite sequence is exchangeable if its every fi-
nite beginning is exchangeable). For example, any IID sequence (i.e., a sequence
of independent and identically distributed random elements) is exchangeable.

With each conformal e-predictor f we can associate the sequence of confor-
mal e-variables

En := f(Z1, . . . , Zn−1, Zn). (2)

Intuitively, large values of the conformal e-variables are evidence against
Z1, Z2, . . . being exchangeable (in particular, IID).

The exchangeable filtration [7, Sect. 5.6] is (Fn), where Fn is the σ-algebra
generated by the multiset *Z1, . . . , Zn−1+ and the observations Zn, Zn+1, . . . .
The following proposition is a stronger version of the property of validity of
conformal e-prediction.

Proposition 1. For any conformal e-predictor f and any n, if the sequence
Z1, Z2, . . . is exchangeable, then

E(En | Fn+1) ≤ 1, (3)

where F is the exchangeable filtration and En is the conformal e-variable (2)
(with “=” in place of “≤” in (3) if f is admissible).

Proof. By the definition of conformal e-predictors we have

E (f(Z1, . . . , Zn) | *Z1, . . . , Zn+) ≤ 1,

and we can add Zn+1, Zn+2, . . . to the condition since Z1, . . . , Zn are exchange-
able conditionally on Zn+1, Zn+2, . . . . This is equivalent to (3).

We still have (3) if the sequence Z1, Z2, . . . = Z1, . . . , ZN is finite pro-
vided its length N is at least n, N ≥ n. In this case the exchangeable fil-
tration is (Fn)n≤N+1, where FN+1 is the σ-algebra generated by the multiset
*Z1, . . . , ZN+.

A weaker version of (3) is E(En) ≤ 1. This can be expressed as En being an
e-variable, where an e-variable is defined to be a nonnegative random variable
with expected value at most 1. The values taken by e-variables are referred to
as e-values.
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3 Conformal e-testing in the online setting

In this section we start our discussion of testing the assumption of exchange-
ability from the online setting. Namely, the testing process proceeds in time by
processing a potentially infinite stream of observations z1, z2, . . . sequentially
one by one, and at each moment we would like to have a measure of the amount
of evidence that we have found against the assumption of their exchangeability.
If such a measure exceeds a large threshold c, we might want to raise an alarm
indicating that exchangeability is likely to have been violated. In conformal
testing, such a measure is provided by conformal test martingales, and it sat-
isfies a strong requirement of validity (an application of Ville’s inequality): we
will raise an alarm with probability at most 1/c. In this section we will see that
the natural counterpart of conformal test martingales in conformal e-testing,
which we call conformal e-pseudomartingales, fails completely to satisfy this
strong property of validity (Proposition 2 below).

The conformal e-pseudomartingale corresponding to the conformal e-
variables (2) is

Sn := E1 . . . En, n = 0, 1, 2, . . . ,

where S0 is understood to be 1. It may not be a genuine martingale since
by Proposition 1 we have E(En | Fn+1) = 1 for all n instead of E(En |
E1, . . . , En−1) = 1 required in the definition of martingales.

The definition of conformal e-pseudomartingales, nevertheless, is very similar
to that of conformal test martingales, and the conformal e-variables En look
analogous to the betting functions of conformal testing [16, Sect. 8.1.2]. It
corresponds to the gambling picture in which we start from an initial capital of
1 and then compound the conformal e-values as usual by multiplying them. The
crucial difference is that in conformal testing a betting function only depends
on the past p-values, whereas in conformal e-testing it may also depend on the
multiset of actual observations.

The following proposition uses the notation

S∗
∞ := sup

n=1,2,...
Sn.

Ville’s inequality can then be written as P (S∗
∞ ≥ c) ≤ 1/c for any c > 1 and

any test martingale S w.r. to P (i.e., any nonnegative martingale S satisfying
S0 = 1). To exclude the trivial case, let us assume that the σ-algebra on Z is
different from {∅,Z}; in particular, |Z| > 1.

Proposition 2. For any ϵ > 0 and c > 1, there exists an exchangeable
probability measure P on Z∞ and a conformal e-pseudomartingale such that
P (S∗

∞ ≥ c) ≥ 1− ϵ.

Proof. Assume, without loss of generality, that Z = {0, 1} and that c is an
integer. Consider an e-predictor f that stakes everything on 1; in particular,
for sequences of any length n,

f : (0, . . . , 0, 1) 7→ (0, . . . , 0, n);
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on the other hand, let
f : (0, . . . , 0) 7→ (1, . . . , 1).

Let Ac ⊆ {0, 1}∞ be the set of all sequences that have 0[c] as their prefix apart
from the sequence 0[∞] (where 0[a] is the sequence consisting of a 0s). Then
Ac ⊆ {S∗

∞ ≥ c}; besides, P (Ac) ≥ 1 − ϵ if, under P , the random observations
Z1, Z2, . . . are generated in the IID manner with the probability of 1 sufficiently
small (but positive).

We interpret the statement of Proposition 2 as a complete loss of validity
(in the strong sense of Ville’s inequality) for conformal e-pseudomartingales. In
particular, Proposition 2 demonstrates that conformal e-pseudomartingales are
not martingales in general. Despite conformal e-pseudomartingales violating
Ville’s inequality so badly, we will see in Sect. 5 that the CUSUM procedure
based on conformal e-pseudomartingales still satisfies the standard property of
validity (as in [16, Corollary 8.14]). Besides, the strong property of validity
holds for a fixed time horizon, as Proposition 3 below will show.

4 Conformal e-testing in the batch setting

Having established loss of validity in the online setting, in this section we move
on to the batch setting, which is standard in statistics (although we use ter-
minology that is standard in conformal testing rather than statistics). Namely,
we assume that the number N of observations is fixed and known in advance.
At the end of step N we are required to make a decision whether to reject the
hypothesis of exchangeability, or at least to present the amount of evidence that
we have found against the null hypothesis of exchangeability.

Conformal e-testing in the batch mode is defined in two steps. First, a
function E : ZN → [0,∞) is called a basic conformal e-test if it has the form

E(z1, . . . , zN ) =

N∏
n=1

f(z1, . . . , zn), ∀(z1, . . . , zN ) ∈ ZN ,

for some conformal e-predictor f . In other words, if E = SN for some conformal
e-pseudomartingale S. And second, a conformal e-test is defined as a convex
combination of basic conformal e-tests: namely, the conformal e-tests are defined
as convex mixtures λ1E

(1)+· · ·+λkE
(k) of basic conformal e-tests E(1), . . . , E(k),

where k ∈ {1, 2, . . . }, λi ∈ [0, 1], and λ1 + · · · + λk = 1. We need the second
step to achieve some efficiency later on, and the following proposition gives
a property of validity for conformal e-pseudomartingales at a fixed time and,
slightly more generally, for conformal e-tests.

Proposition 3. Suppose Z1, . . . , ZN are exchangeable. For any conformal e-test
E, E(Z1, . . . , ZN ) is a bona fide e-variable. It satisfies E(E(Z1, . . . , ZN )) = 1 if
the underlying conformal e-predictor is admissible.
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Proof. Assume, without loss of generality, that E is a basic conformal e-test.
We will use the notation (2), where f is the underlying conformal e-predictor,
and the exchangeable filtration (Fn). We can show that E(E1 . . . En | Fn+1) ≤ 1
a.s. by induction in n (for n = 0 this statement is vacuously true as equality):

E(E1 . . . En | Fn+1) = E(E(E1 . . . En | Fn) | Fn+1)

= E(EnE(E1 . . . En−1 | Fn) | Fn+1) ≤ E(En | Fn+1) ≤ 1 a.s.,

the last inequality following from Proposition 1. If the underlying conformal
e-predictor is admissible, both “≤” become “=”.

If a conformal e-test E is chosen in advance and takes a very large value
on the realized data sequence, we are justified in rejecting the assumption of
exchangeability.

As the next step, we explore the efficiency of conformal e-testing along the
lines of the treatment of the efficiency of conformal testing in [16, Sect. 9.1]. As
in the case of conformal testing [16, Sect. 9.1], for our (rather weak) statement
of efficiency we will simplify our task by only considering the binary case, Z =
{0, 1}.

First we define unrestricted testing of exchangeability. The upper exchange-
ability probability Pexch of measurable A ⊆ ZN is defined as

Pexch(A) := sup
P

P (A), (4)

P ranging over the exchangeable probability measures on ZN . The intuition
behind Pexch(A) is that, if it is very small, A can be used for testing the ex-
changeability of the data-generating distribution: we are entitled to reject ex-
changeability if (z1, . . . , zN ) ∈ A provided A is chosen in advance.

The upper conformal e-probability Pce of A ⊆ ZN is defined as

Pce(A) := inf {α : ∃E ∀(z1, . . . , zN ) ∈ A : E(z1, . . . , zN ) ≥ 1/α} , (5)

E ranging over the conformal e-tests. The intuition is the same: if Pce(A) is very
small, we are entitled to reject exchangeability if we observe (z1, . . . , zN ) ∈ A,
again assuming that A is chosen in advance. The difference from Pexch(A) is that
now the lack of exchangeability must be demonstrated via conformal e-testing.

The following proposition is an analogue of [16, Proposition 9.5]. Intuitively,
its second statement says that conformal e-testing is universal in the batch mode:
if lack of exchangeability can be demonstrated at all, it can be demonstrated
(albeit less convincingly) using conformal e-testing. (And its first statement is
another expression of validity.)

Proposition 4. For any event A ⊆ ZN , Pexch(A) ≤ Pce(A). Assuming Z =
{0, 1}, Pce(A) ≤ N Pexch(A).

Proof. The inequality Pexch(A) ≤ Pce(A) follows immediately from Markov’s
inequality applied to conformal e-tests E in combination with Proposition 3: if

6



E(z1, . . . , zN ) ≥ 1/α for all (z1, . . . , zN ) ∈ A,

Pexch(A) ≤ P(E(Z1, . . . , ZN ) ≥ 1/α) ≤ E(E(Z1, . . . , ZN ))

1/α
≤ α,

assuming Z1, . . . , ZN are exchangeable.
Now assume Z = {0, 1}; this part of the proof will be a modification of the

proof of Proposition 9.5 in [16, Sect. 9.4.2]. As a first step, notice that it suffices
to prove Pce(A) ≤ Pexch(A) for any nonempty A ⊆ ZN such that each sequence
in A has the same number of 1s. Let us fix such an A, and let K ∈ {0, . . . , N} be
the number of 1s in the elements of A. For each sequence ζ = (z1, . . . , zN ) ∈ A,
consider the basic conformal e-test Eζ = e1 . . . eN , where the nth e-value en is

en :=

{
n/k if zn = 1

n/(n− k) if zn = 0,

k being the number of 1s among the first n elements of ζ. (This corresponds to
a nonconformity e-measure satisfying

A
(
0[n−k], 1[k]

)
:=


(
0[n−k],

(
n
k

)[k])
if zn = 1((

n
n−k

)[n−k]

, 0[k]
)

if zn = 0,

where b[a] = b, . . . , b (a times), as in the proof of Proposition 2. This was called
“reckless gambling” in [16, end of Sect. 9.1.2].) The product Eζ = e1 . . . eN will
then be

N !

K!(N −K)!
=

(
N

K

)
.

The arithmetic mean of Eζ over ζ ∈ A witnesses that

Pce(A) ≤ |A|/
(
N

K

)
= Pexch(A).

Proposition 2 can be restated in terms of Pexch and Pce adapted to the online
setting. Let A ⊆ Z∞. Define Pexch(A) by (4), as before, with P ranging over
the exchangeable probability measures on Z∞. In the spirit of Ville’s inequality,
let us modify (5) as

Pce(A) := inf {α : ∃S ∀(z1, z2, . . . ) ∈ A : S∗
∞(z1, z2, . . . ) ≥ 1/α} ,

where S ranges over the conformal e-pseudomartingales and we slightly abuse
our notation by regarding Sn as functions of the observations. Then we can see
that Pexch(Ac) = 1 and Pce(Ac) ≤ 1/c → 0 as c → ∞ (where Ac are defined
in the proof of Proposition 2). This can be expressed as Pexch and Pce being
entirely asymptotically separated (cf. [11, Sect. 3.10, especially (3)]).
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5 The conformal CUSUM e-procedure: validity

In the previous section we discussed testing the assumption of exchangeability
once, but in some important applications we would like to test it repeatedly over
time in the online mode (see, e.g., [16, Sect. 8.3]): as soon as we suspect that
exchangeability is violated, we raise an alarm, and we are allowed do so more
than once. The topic of this and next sections is such multistage exchangeability
testing. As usual, such procedures are required to satisfy properties of validity
and efficiency. Here validity means that, under exchangeability, the probability
or frequency of alarms (which in this case are false alarms) should be bounded
by a prespecified constant. When applied to the moment when the first alarm is
raised, such properties of validity are much weaker than the property of validity
discussed in the previous sections: the first alarm is usually raised, sooner or
later, with probability one. And efficiency means that, if exchangeability is vio-
lated at some point, an alarm should be raised as quickly as possible afterwards.
In this section we concentrate on validity of multistage testing.

Suppose we observe a sequence of e-values e1, e2, . . . output by a conformal
e-predictor in the online protocol, as described in Sect. 3, under exchangeability.
The conformal CUSUM e-procedure [5] raises the kth alarm, k = 1, 2, . . . , at
the time

τk := min

{
n > τk−1 : max

i∈{τk−1+1,...,n}
ei . . . en ≥ c

}
, (6)

where τ0 := 0 and c > 1 is the parameter of the procedure. It is usually
applied in the situation where the observations zi are generated independently
first from a known probability measure Q0 ∈ P(Z) and then from another
known probability measure Q1 ∈ P(Z) (P(Z) being the family of all probability
measures on Z), and where ei is the likelihood ratio of Q1 to Q0 evaluated at
zi (see, e.g., [6, Sect. 6.2] or (10) below). In our current context, where the ei
are conformal e-values, we may call it the conformal CUSUM e-procedure.

The following proposition gives an asymptotic property of validity for the
conformal CUSUM e-procedure.

Proposition 5. Let An be the number of alarms

An := max{k | τk ≤ n} (7)

raised by the conformal CUSUM e-procedure (6) after processing the first n
observations Z1, . . . , Zn. Then

lim sup
n→∞

An

n
≤ 1

c
a.s. (8)

provided the observations Z1, Z2, . . . are exchangeable.

In practical applications, Proposition 5 can be applied when, after investi-
gating each alarm, it is decided that the alarm was false, and so we can continue
processing a single stream of observations. If the alarm was genuine, we need
to reset the multistage procedure, and Proposition 5 is not applicable.
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A popular modification of the CUSUM procedure is the Shiryaev–Roberts
procedure, which replaces the max in (6) by the sum

∑
(see, e.g., [6, Sect. 6.5]).

To state our next validity result (Proposition 6 below), we need the modification

τk := min

n > τk−1 : max
i∈{τk−1+1,...,n}

n∑
j=i

ei . . . ej ≥ c

 , (9)

which we will call the reverse Shiryaev–Roberts procedure (or conformal reverse
Shiryaev–Roberts e-procedure to emphasize ei being produced by a conformal
e-predictor).

Proposition 6. Let An be defined by (7) for the conformal reverse Shiryaev–
Roberts e-procedure (9). Then we still have (8) provided the observations
Z1, Z2, . . . are exchangeable.

See Appendix A for the proofs. We will, of course, deduce Proposition 5
from Proposition 6: it is clear that the Shiryaev–Roberts procedure (regular or
reverse) raises alarms at least as often as CUSUM does. However, the following
example shows an advantage of CUSUM from an intuitive point of view.

Example 7. Consider the vacuous admissible conformal e-predictor identically
equal to 1. The CUSUM procedure based on it will never raise alarms, while
the Shiryaev–Roberts e-procedure will raise alarms every ⌈c⌉th step, thereby
fully exploiting (for an integer c) the leeway permitted by our target property of
validity (8). This example shows one feature of the Shiryaev–Roberts procedure
(shared by the reverse Shiryaev–Roberts procedure) that can be considered
its disadvantage: while the CUSUM procedure raises an alarm when it has
genuine evidence for disorder, the Shiryaev–Roberts procedure may raise an
alarm simply because it is allowed to do so by a given constraint; we might not
have any evidence for disorder.

Because of the feature of the Shiryaev–Roberts procedure illustrated in Ex-
ample 7, in the next section we will concentrate on CUSUM-type procedures.

6 The conformal CUSUM e-procedure: effi-
ciency

The standard version of the CUSUM procedure satisfies important properties
of optimality [6, Chap. 6]: it is optimal in Lorden’s [3] sense, as shown by
Moustakides [4]; it is also optimal in Ritov’s [8] very natural game-theoretic
sense. However, as we mentioned in the previous section, the standard CUSUM
procedure works under restrictive assumptions: we know the prechange distri-
bution Q0 ∈ P(Z) and the postchange distribution Q1 ∈ P(Z), and the only
unknown is the changepoint N0; the observations Z1, . . . , ZN0

are generated
from Q0, and the observations ZN0+1, ZN0+2, . . . are generated from Q1, all in-
dependently. Let f0 and f1 be probability densities of Q0 and Q1, respectively,
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w.r. to a σ-finite measure µ on Z (such as µ := Q0 +Q1) under which both Q0

and Q1 are absolutely continuous. We will use E0 and E1 for expectations w.r.
to Q0 and Q1, respectively.

The standard CUSUM procedure is based on the likelihood ratios

Ln := f1(zn)/f0(zn). (10)

(For simplicity, the reader may assume that Q0 and Q1 are positive discrete
distributions and replace f0(z) and f1(z) by Q0({z}) and Q1({z}), respectively.)
As in (6), the kth alarm is raised at the time

τk := min

{
n > τk−1 : max

i∈{τk−1+1,...,n}
Li . . . Ln ≥ c

}
, (11)

with τ0 := 0. For comparison, we will also discuss experimental results for the
conformal CUSUM procedure, which is defined in a similar way using conformal
p-values, as explained in [16, Sect. 8.3.1].

This section implements a version of the “Burnaev–Wasserman programme”
[16, Sect. 2.5] applied to the CUSUM procedure. Suppose we would like to
detect deviations from exchangeability, but we have a prior model of the data
generation mechanism in which the observations are first generated from a given
Q0 ∈ P(Z) and then from another given probability measure, Q1 ∈ P(Z),
independently of the previous observations. We however, do not trust our model
and do not want the validity of our procedure to depend on it. Therefore,
we “conformalize” the standard CUSUM procedure, using the likelihood ratios
(10) (normalized to ensure (1)) as nonconformity e-scores. (Details will follow
shortly.) The procedure of conformalization may be said to work well if the
quality of the conformalized CUSUM is not significantly worse than the quality
of the standard CUSUM even when the assumptions on which the standard
CUSUM is based are fully satisfied.

Some experimental results for the case of Bernoulli observations are shown in
Figure 1. In this experiment we generate N0 := 1000 observations Z1, . . . , ZN0

from the Bernoulli distribution with parameter 0.5 and another N1 := 1000
observations ZN0+1, . . . , ZN0+N1

from the Bernoulli distribution with parameter
0.6. The changepoint 1000 is shown as a dashed vertical line. The left panel of
Figure 1 shows the paths of five stochastic processes:

� the likelihood ratio martingale L1 . . . Ln, n = 0, 1, . . . , N0 +N1, in blue;

� the conformal e-pseudomartingale E1 . . . En, n = 0, 1, . . . , N0 +N1 in or-
ange; the conformal e-values are defined as the normalized Ln:

En :=
Ln

1
n (L1 + · · ·+ Ln)

; (12)

� the green, red, and purple lines correspond to conformal testing; they will
be discussed later and can be ignored for now.
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Figure 1: Five stochastic processes, as described in text, in the Bernoulli case
(with the parameter 0.5 before the changepoint and 0.6 after the changepoint).
Left panel: the paths of the processes. Right panel: the paths of the corre-
sponding CUSUM statistics.

The right panel of Figure 1 shows the corresponding CUSUM statistics, where
the CUSUM statistics of a process Sn, n = 0, 1, 2, . . . are defined as

S′
n := Sn/min(S0, . . . , Sn−1)

(notice that τ1 in (6) and (11) is defined as the moment when the CUSUM
statistic first reaches level c).

The five lines (CUSUM statistics) in the right panel of Figure 1 illustrate
the efficiency of various versions of the CUSUM procedure in detecting the
changepoint. The detection happens when the line first reaches the level c after
the changepoint. (We ignore the rare case where the level c is reached between
the changepoint and the last time before the changepoint when the CUSUM
statistic is 0.) Without fixing c, we can judge how efficient the procedure is by
the slope of the line after the changepoint. For example, we can see that the
conformal CUSUM e-procedure (corresponding to the orange line) will raise an
alarm not much later than the standard CUSUM procedure (corresponding to
the blue line) for c up to about 103.

The blue and orange lines in the right panel are close to each other shortly
after the changepoint, suggesting that conformal e-testing is efficient at first,
but then they start diverging. This divergence illustrates the phenomenon of
“decay” discussed in [16, Sect. 8.4.1]. In fact, decay is inevitable and by it-
self does not indicate lack of efficiency of conformal e-testing (unless it sets in
too early). Remember that the likelihood ratio martingale and conformal e-
pseudomartingale are testing very different null hypotheses: for the former the
null hypothesis is Q0, and for the latter it is exchangeability. If our null hypoth-
esis is Q0, we will be constantly surprised seeing observations from Q1 ̸= Q0,
whereas under exchangeability Q1 will gradually become “the new normal”, and
we will stop being surprised. Therefore, decay will inevitably happen, and it

11



is the moment when it sets in that is the hallmark of efficiency (the later the
better).

In our experiments we always use the standard seed 42 for the numpy random
number generator, but the results are qualitatively similar for other seeds as well
(one unusual feature of Figure 1 is that the likelihood ratio martingale does not
start its ascent right after the changepoint, which typically happens for other
seeds).

The green, red, and purple lines in the left panel of Figure 1 show the paths
of three conformal test martingales, as defined in [16, Sect. 8.1.2]. (This and
next paragraphs depend on and use the terminology of [16, Sect. 8.1].) The
nonconformity score of each observation Zn (here and in Figure 2 below) is
defined to be the likelihood ratio Ln (which is equivalent to using Zn itself as
nonconformity score in the current Bernoulli case). This produces a sequence of
conformal p-values p1, p2, . . . . To turn conformal p-values into a conformal test
martingale, we need to define betting functions. In Figure 1 we use the Simple
Jumper betting functions [16, Sect. 8.1.2] omitting the adjective “Simple” in
the caption. The resulting Simple Jumper martingale depends on a parameter
called jumping rate, and we use three values for it as indicated in the legend.

It would be more in the spirit of the Burnaev–Wasserman programme to
adapt the betting functions to the assumed Q0 and Q1. This is an interesting
direction for further research, but in this paper we are only using Simple Jumper,
a generic betting martingale that often gives satisfactory results for a wide
range of datasets [16, Sect. 8.1.2, (8.8)]. (Using a generic betting martingale is
analogous to our use of a generic way of betting, given by (12), in the conformal
CUSUM e-procedure.)

To start theoretical analysis of the phenomena demonstrated by the blue and
orange lines in Figure 1, let us see why the blue line changes its slope after the
changepoint. Before the changepoint, n ≤ N0, the expectation of the likelihood
ratio is at most 1:

E0Ln = E0
f1(Zn)

f0(Zn)
=

∫
f1
f0

f0 dµ ≤
∫

f1 dµ = 1; (13)

it is 1 if Q1 is absolutely continuous w.r. to Q0 (which is always the case in our
experiments). After the changepoint, n > N0, it becomes

E1Ln = E1
f1(Zn)

f0(Zn)
=

∫
f1
f0

f1 dµ = 1+

∫
(f1 − f0)

2

f0
dµ = 1+χ2(Q0, Q1), (14)

where χ2 stands for the χ2 distance between probability measures (see, e.g., [1,
Sect. 31, Definition 2]); the value (14) exceeds 1 unless Q0 = Q1. This suggests
that the blue line is close to being horizontal before the changepoint while it
starts increasing after the changepoint.

While the calculations (13)–(14) are useful and will be used in the proof of
Proposition 8 below, it would be wrong to interpret them directly as indicators
of the tendency of the likelihood ratio martingale to increase or decrease. For

12



that, we should use

E0 lnLn =

∫
f0 ln

f1
f0

dµ = −KL(Q0, Q1) < 0

before the changepoint and

E1 lnLn =

∫
f1 ln

f1
f0

dµ = KL(Q1, Q0) > 0

after the changepoint, where KL stands for the Kullback–Leibler divergence.
Therefore, the slope of the blue line is expected to be negative before the change-
point and positive after it. This agrees with what we see in Figure 1.

Let us now check informally that the conformal e-values En and the likeli-
hood ratios Ln can be expected to be close to each other soon after the change-
point. Indeed, soon after the changepoint we will have

EN0+n =
LN0+n

1
N0+n (L1 + · · ·+ LN0 + LN0+1 + · · ·+ LN0+n)

(15)

≈ LN0+n

N0

N0+n + 1
N0+n (LN0+1 + · · ·+ LN0+n)

≈ LN0+n. (16)

The equality in (15) is just an application of the definition (12). The first
approximate equality (which holds with high probability) in (16) follows from
the law of large numbers assuming N0 is large; we obtained it by replacing
L1+ · · ·+LN0

by N0 (see (13)). In the denominator in (16) we have a weighted
average of 1 and the postchange likelihood ratios. The cumulative weight n

N0+n
of the postchange likelihood ratios is small if n ≪ N , and the second approxi-
mate equality in (16) assumes both n ≪ N and the postchange likelihood ratios
being only moderately large. The presence of the postchange likelihood ratios
in the denominator in (16) can be regarded as the usual conformal adjustment
in this context. The closeness of En and Ln is manifested in the closeness of
the blue and orange lines in Figure 1 soon after the changepoint.

The following proposition compares more formally the behaviour of the like-
lihood ratio martingale and the conformal e-pseudomartingale after the change-
point N0. For simplicity we will assume that the likelihood ratios Ln are
bounded; e.g., Ln ∈ [0.8, 1.2] in the situation of Figure 1.

Proposition 8. Suppose that Zn, n = 1, . . . , N0, are generated from Q0 ∈
P(Z), that Zn, n = N0 + 1, . . . , N0 + N1, are generated from Q1 ∈ P(Z), all
independently, and that the likelihood ratios Ln are bounded: 0 ≤ a ≤ Ln ≤ b <
∞. Suppose E0Ln = 1 and c := E1Ln > 1. For any ϵ ∈ (0, 1), we have

∀n ∈ {1, . . . , N1} : ln
LN0+1 . . . LN0+n

EN0+1 . . . EN0+n
<

n(n+ 1)

N0

c

2

+
n

N
1/2
0

|b− a|
√

1

2
ln

2

ϵ
+

(N1 + 1)3/2

N0
|b− a|

√
1

6
ln

2

ϵ
(17)

with probability at least 1− ϵ.
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Figure 2: Five processes as in Figure 1 but for the Cauchy distributions with
the location and scale parameters (0, 1) before the changepoint and (0, 0.7) after
the changepoint. Left panel: the raw processes. Right panel: the corresponding
CUSUM statistics.

The proof of Proposition 8 is given in Appendix B.
The inequality in (17) shows that, for a fixed ϵ, the conformal e-

pseudomartingale grows after the changepoint almost as fast as the likelihood
ratio martingale if N1 ≪

√
N0. In the situation of Figure 1, the proposi-

tion tells us that we can expect similar rates of growth for the conformal
e-pseudomartingale and the likelihood ratio martingale for around

√
1000 ≈ 30

steps, whereas we observe similar rates of growth for about 300 steps.
Figure 2 is a counterpart of Figure 1 for continuous, namely Cauchy, dis-

tributions. Plots for Gaussian distributions, which are more standard, look
similar, but we have chosen a more awkward case of a distribution without a
mean, to make it less similar to the Bernoulli case. The conformal test mar-
tingales, despite the generic nature of their betting functions, now work much
better than in Figure 1; to see that they are still much worse than the con-
formal e-pseudomartingale, the reader should pay attention to their behaviour
soon after the changepoint at 1000, where their growth is relatively sluggish.

7 Conclusion

The only known approach to detecting exchangeability violations online before
this paper was based on conformal prediction; see, e.g., [16, Part III]. The
approach of this paper is based instead on conformal e-prediction. The two
approaches are very different, and neither dominates the other in all interesting
applications. These are some differences:

� Design of conformal test martingales involves two distinct steps: using a
conformity measure to obtain p-values and then betting against those p-
values. Conformal e-pseudomartingales do not involve such a rigid division
and thus appear to be more flexible.
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� On the other hand, when betting on the nth step against the nth p-value
pn, n = 1, 2, . . . , conformal test martingales may use the previous p-values
p1, . . . , pn−1. Such dependence on the past is not allowed for conformal
e-pseudomartingales.

� Conformal test martingales are randomized (without randomization we
only obtain conformal test supermartingales) whereas conformal e-pseudo-
martingales do not require randomization (it is optional and not used in
this paper).

We have discussed advantages and disadvantages of conformal testing and
conformal e-testing. In summary:

1. In the online protocol, conformal testing relies on bona fide test martin-
gales, which can then be used in one-off and multistage conformal testing.
On the other hand, conformal e-pseudomartingales are not, in general,
test martingales, and for them Ville’s inequality can be violated badly
(Sect. 3).

2. A weakened variants of an efficiency result for conformal testing adapted
to conformal e-testing is discussed in Sect. 4.

3. In Sect. 5 we construct a conformal CUSUM e-procedure that is a natural
modification of the standard CUSUM procedure, while construction of an
efficient conformal CUSUM procedure is more difficult and dependent on
the postulated Q0 and Q1 (whereas (12) is applicable universally).

4. A final advantage of conformal e-testing is that it requires no randomiza-
tion.

The first strength, 1, is a clear advantage of conformal testing over conformal
e-testing. For strength 2, the picture is more ambiguous, as the strength of
conformal testing still partly survives for conformal e-testing. And we also have
two advantages, 3 and 4, of conformal e-testing.

These are some interesting directions of further research:

� Developing betting functions that are better adapted to the assumed prob-
ability distributions Q0 and Q1 than the generic ones used in the Simple
Jumper method (Sect. 6). (Perhaps in the spirit of the “Bayes–Kelly”
approach of [16, Part III].)

� Is it possible to strengthen Proposition 8 to obtain performance guarantees
for the conformal CUSUM e-procedure that are comparable with what we
observe in the experimental results?

� One disadvantage of using the CUSUM procedure with a threshold c and
the target asymptotic frequency of false alarms 1/c is that this method,
while valid by Proposition 5, might be a conservative way of achieving this
target: namely, Proposition 5 appears to be conservative, since even the
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Shiryaev–Roberts procedure achieves the target. Is it possible to employ,
e.g., adaptive conformal inference [2] or defensive forecasting [10, Chap. 12]
to adapt online the threshold c to a target frequency of false alarms α?
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A Proofs for Sect. 5

The idea of the proof of Proposition 6 consists, as usual, in reversing the di-
rection of time. Let N be a sufficiently large natural number and (Fn) be the
exchangeable filtration.

Remember that En is the nth conformal e-variable (2); it has en as it value.
Then (En,Fn), n = N, . . . , 1, is an exact e-flow (in the terminology of [15]) over
the finite time interval N, . . . , 1, in the sense

E(En | Fn+1) = 1, n = N, . . . , 1.

The corresponding martingale is (Tn,Fn), n = N + 1, . . . , 1, where

Tn := En . . . EN , n = N + 1, N, . . . , 1,

with TN+1 understood to be 1. For simplicity, let us assume that all En are
positive, so that Tn is a positive martingale.

Let us apply the Shiryaev–Roberts procedure to the e-flow EN , . . . , E1, . . .
continued by setting E0 := E−1 := · · · := 1. It gives us the decreasing sequence
of stopping times σ0 := N + 1 and

σk := max

{
n < σk−1 |

σk−1−1∑
i=n

En . . . Ei ≥ c

}
, k = 1, 2, . . . , (18)

where n ranges over the integers. A useful property of the Shiryaev–Roberts
procedure is E(σk−1 − σk | Fσk

) ≥ c; see, e.g., [16, Proposition 8.13] (proved in
[16, Sect. 8.5.2]; the current proof also uses some other ideas in that section).
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To make the stopping times (18) more manageable, it will be convenient to
force an alarm every L steps, where L is to be chosen later: σ′

0 := N + 1 and

σ′
k := (σ′

k−1 − L) ∨max

n < τk−1 |
σ′
k−1−1∑
i=n

En . . . Ei ≥ c

 , k = 1, 2, . . . ;

let us call this the truncated Shiryaev–Roberts procedure. As in the proof of [16,
Corollary 8.4], induction in k shows that σ′

k ≥ σk for all k.
There is a useful connection between τk and σ′

k: namely, each set {τk−1 +
1, . . . , τk} with τk ≤ N contains at least one stopping time σ′

l. (This is even
true for σl, although we do not need it.) This can be deduced from

τk∑
j=i

Ei . . . Ej ≥ c for some i ≥ τk−1 + 1. (19)

Indeed, let l be the largest number satisfying σ′
l > τk; arguing indirectly, let us

suppose that σ′
l+1 < τk−1 + 1. The inequality (19) implies

σ′
l−1∑
j=i

Ei . . . Ej ≥
τk∑
j=i

Ei . . . Ej ≥ c for some i > σ′
l+1,

which contradicts the definition of the stopping times σ′.
As in [16, Proof of Proposition 8.15 in Sect. 8.5.2], let us say that k is slow

if
P
(
σ′
k−1 − σ′

k = L | Fσ′
k−1

)
≥ c/L

and fast otherwise. We show there that

E
(
σ′
k−1 − σ′

k | Fσ′
k−1

)
≥ c− c2/L (20)

if k is fast. On the other hand, if k is slow,

E
(
σ′
k−1 − σ′

k | Fσ′
k−1

)
≥ LP

(
σ′
k−1 − σ′

k = L | Fσ′
k−1

)
≥ c.

In both cases, we have (20).
Let A′

N be the largest k such that σ′
k > 0; we interpret A′

N as the number
of alarms raised by the truncated Shiryaev–Roberts procedure. Remember that
AN , defined by (7), is the number of alarms raised by the conformal reverse
Shiryaev–Roberts e-procedure. By Hoeffding’s inequality [16, Sect. A.6.3], for
arbitrarily small ϵ ∈ (0, c) and sufficiently large N ,

P
(
AN

N
≥ 1

c− ϵ

)
≤ P

(
A′

N

N
≥ 1

c− ϵ

)
= P

(
A′

N ≥
⌈

N

c− ϵ

⌉)

≤ P

⌈ N
c−ϵ ⌉∑
k=1

(σ′
k−1 − σ′

k) ≤ N

 ≤ exp

−2

(
⌈ N
c−ϵ⌉

(
c− c2

L

)
−N

)2
L2⌈ N

c−ϵ⌉
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≤ exp(−ϵ′N),

where ϵ′ is a positive constant (which requires a sufficiently large L). Since the
series

∑
N exp(−ϵ′N) converges,

AN

N
≥ 1

c− ϵ

happens only finitely often, which completes the proof of Proposition 6.
To deduce Proposition 5 notice that, by induction in k, τSRk ≤ τCUSUM

k ,
where τCUSUM

k are the τk defined by (6), and τSRk are the τk defined by (9).

B Proof for Sect. 6

The proof will be based on the following “maximal” version of Hoeffding’s in-
equality.

Proposition 9 (maximal Hoeffding inequality). Let F0, . . . ,FN be a filtration.
For any deterministic sequence c1, . . . , cN of positive numbers, any predictable
sequence a1, . . . , aN w.r. to (Fi), any supermartingale difference ξ1, . . . , ξN w.r.
to (Fi) such that ξi ∈ [ai, ai + ci], i = 1, . . . , N , and any β > 0,

P

{
max

n=0,...,N

n∑
i=1

ξi ≥ β

}
≤ exp

(
− 2β2∑N

i=1 c
2
i

)
(21)

For a proof of Proposition 9, see, e.g., [9, Theorem 3.2.1] (or adapt a proof
of Hoeffding’s standard inequality, such as that given in [16, Sect. A.6.3]).

The interpretation of the three addends on the right-hand side of the in-
equality in (17) is: the first addend reflects the effect of the expectation c of
the postchange likelihood ratios, the second addend reflects the volatility of
the prechange likelihood ratios, and the third addend reflects the volatility of
the postchange likelihood ratios. We start from the first addend and split the
permitted probability ϵ of violating (17) into two equal parts, one controlling
the prechange behaviour of the likelihood ratios and the other controlling their
postchange behaviour.

By Hoeffding’s inequality (21) we will have

N0∑
n=1

Ln < N + β with probability ≥ 1− ϵ

2
(22)

when

exp

(
− 2β2

N0(b− a)2

)
=

ϵ

2
,

and so, solving this equation, we set

β :=

√
1

2
N0(b− a)2 ln

2

ϵ
. (23)
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The log ratio in the left-hand side of the inequality in (17) can be bounded
from above as follows:

ln
LN0+1 . . . LN0+n

EN0+1 . . . EN0+n
(24)

= ln

(
L1 + · · ·+ LN0

+ LN0+1

N0 + 1
. . .

L1 + · · ·+ LN0
+ LN0+1 + · · ·+ LN0+n

N0 + n

)
< ln

(
N0 + β + LN0+1

N0
. . .

N0 + β + LN0+1 + · · ·+ LN0+n

N0

)
≤ nβ + nLN0+1 + · · ·+ LN0+n

N0
, (25)

where the first inequality, which holds with probability at least 1− ϵ/2, follows
from the inequality in (22) (decreasing the denominators does not affect the
validity of the first inequality), and the second inequality follows from the stan-
dard inequality ln(1 + x) ≤ x. The expectation of the upper bound (25) on the
log-ratio (24) is

nβ + c(1 + · · ·+ n)

N0
=

nβ + cn(n+ 1)/2

N0
. (26)

By Hoeffding’s maximal inequality (21) we will have

∀n ∈ {1, . . . , N1} :
n(LN0+1 − c) + · · ·+ (LN0+n − c)

N0
< B (27)

with probability at least 1− ϵ/2 when

exp

(
− 2B2N2

0

(b− a)2 + · · ·+N2
1 (b− a)2

)
=

ϵ

2
.

Solving the last equation and using the standard identity 1 + · · ·+ n2 = n(n+
1)(2n+ 1)/6, we set

B :=
(N1 + 1)3/2

N0

√
1

6
(b− a)2 ln

2

ϵ

>
1

N0

√
1

12
N1(N1 + 1)(2N1 + 1)(b− a)2 ln

2

ϵ
. (28)

Combining (23), (24)–(25), (26), (27), and (28), we obtain that (17) holds
with probability at least 1− ϵ, which completes the proof of Proposition 8.
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