
Protected probabilistic regression

Vladimir Vovk

ïðàêòè÷åñêèå âûâîäû

òåîðèè âåðîÿòíîñòåé

ìîãóò áûòü îáîñíîâàíû

â êà÷åñòâå ñëåäñòâèé

ãèïîòåç î ïðåäåëüíîé

ïðè äàííûõ îãðàíè÷åíèÿõ

ñëîæíîñòè èçó÷àåìûõ ÿâëåíèé

On-line Compression Modelling Project (New Series)

Working Paper #34

First posted May 18, 2021. Last revised July 31, 2021.

Project web site:
http://alrw.net

Abstract

This paper proposes a procedure for protecting probabilistic regression algo-
rithms against changes in the distribution of the incoming data. It is inspired
by the success of the recent conformal test martingales. The procedure combines
the probability integral transformation and betting martingales. Simulation and
empirical studies give promising results.

Contents

1 Introduction 1

2 Probability integral transformation 2

3 Testing probability forecasting systems 3

4 The protection procedure 3

5 A simulation study 4

6 Empirical studies 9

7 Conclusion 12

References 13

1 Introduction

This paper is inspired by the power of betting martingales used in conformal
prediction. It has been repeatedly observed in collaboration with our industrial
partners (such as Astra Zeneca and Stena Line) that the distribution of the data
usually changes, often drastically, after a prediction algorithm has been trained
and a prediction rule is ready to be deployed, with the change in distribution
easily detectable by conformal test martingales. This is likely to lead to a
significant deterioration in the performance of the prediction rule.

The idea of this paper is to turn successful betting accomplished by a test
martingale into improvement in the quality of a prediction rule. In the case of
conformal testing, we bet against the hypothesis of exchangeability. In the case
of our proposed procedure, we bet against the prediction rule computed from
the training set (the base prediction rule, as we will call it). It seems plausible
that in the absence of exchangeability the prediction rule will work poorly on
the test data, and a suitable test martingale (with initial value 1) will attain
high values when betting against the prediction rule. This automatically leads
to an improved prediction rule.

Formally, the method proposed in this paper is independent of conformal
prediction. In particular, it does not depend on the IID assumption (and can be
applied, e.g., to time series). However, conformal prediction not only motivates
it but also provides required technical tools.

Conformal testing consists of two steps: first we turn an IID sequence of
observations into a sequence of p-values distributed uniformly in [0, 1]∞ (thus
turning a composite null hypothesis into a simple one), and then we gamble
against the p-values being independent and uniformly distributed. A very simi-
lar strategy works for betting against the base prediction rule. Lévy’s [6, Section
39] probability integral transformation turns a prediction rule for probabilistic
regression into a source of IID random variables uniformly distributed in [0, 1].
This plays the role of the first step of conformal testing. We can then apply
the numerous betting martingales developed in conformal testing. Such betting
martingales translate into test martingales that gamble successfully against the
original prediction rule. However, since a test martingale is essentially the same
thing as the likelihood ratio with the original prediction rule in the denomina-
tor, a successful test martingale provides us with a new (protected) prediction
rule (the one in the numerator) that outperforms the original prediction rule.

In designing betting martingales we can apply all arsenal of the tools devel-
oped in the area of tracking the best expert in prediction with expert advice,
such as switching between different experts, averaging over parameters, sleep-
ing, etc. See, e.g., [9] for a basic review. We will use, however, the most basic
methods.

This paper proposes to use testing procedures (namely, betting martingales,
such as the Simple Jumper and Mean Jumper) for developing better and more
robust prediction algorithms. In this respect it is reminiscent of the method of
defensive forecasting [8, Chapter 12], which starts from a test martingale (more
generally, a strategy for Sceptic) and then develops a prediction algorithm that

1

prevents the test martingale (more generally, Sceptic’s capital) from growing.
An advantage of our current procedure is that in typical cases it is computation-
ally more efficient (in particular, it never requires finding fixed points or solving
equations, as in defensive forecasting).

In principle, it is possible that the protected prediction rule will perform
worse than the original rule on the actual data. We will introduce the notion of
the price of protection, which is the worst possible drop in the performance of the
protected prediction rule as compared to the original one. We are particularly
interested in procedures with a finite price of protection.

We will start in Section 2 from discussing Lévy’s probability integral trans-
formation, which generates IID random variables distributed uniformly in [0, 1]
(the analogue of p-values in conformal prediction). The topic of Section 3 is
online testing of the probability integral transforms for uniformity. Section 4
combines results of the previous two sections for the purpose of protecting pre-
diction algorithms and introduces the notion of the price of protection. A toy
simulation study is described in Section 5, but the protection procedure of Sec-
tion 4 is general and widely applicable; this will be further discussed in Section 7.

2 Probability integral transformation

The key fact that makes conformal testing possible is that conformal prediction
outputs p-values that are independent and distributed uniformly in [0, 1]. With-
out assuming that the observations are IID, we have a similar phenomenon for
the probability integral transformation: if a probability forecasting system out-
puts probabilistic forecasts with distribution functions F1, F2, . . . and y1, y2, . . .
are the corresponding observations, the values F1(y1), F2(y2), . . . are indepen-
dent and distributed uniformly in [0, 1]. (To avoid complications, let us assume
that all Fn are continuous.)

The uniformity of the probability integral transforms was used by Lévy [6,
Section 39] as the foundation of his theory of denumerable probabilities (which
allowed him to avoid using the then recent axiomatic foundation suggested by
Kolmogorov in his Grundbegriffe [5]). Modern papers, including [2], usually refer
to Rosenblatt [7], who disentangled Lévy’s argument from his concern with the
foundations of probability; Rosenblatt, however, refers to Lévy’s 1937 book [6]
in his paper.

The probability integral transformation can be used for testing the under-
lying probability forecasting system considered as the data-generating distribu-
tion. See, e.g., [2, Sections 3.8 and 4.7]. According to [3, Section 3.1], it forms
the cornerstone of checking calibration of probability forecasts.

Remark 1. The probability integral transformation can be regarded as a way
of normalizing the labels, so that standard martingales become more likely to
work. In principle, all the methods proposed in this paper can be applied directly
to the labels rather than to their transforms.

2

Algorithm 1 Simple Jumper betting martingale ((u1, u2, . . .) 7→ (S1, S2, . . .))

1: C−1 := C0 := C1 := 1/3
2: C := 1
3: for n = 1, 2, . . . :
4: for ε ∈ {−1, 0, 1}: Cε := (1− J)Cε + (J/3)C

5: for ε ∈ {−1, 0, 1}: Cε := Cεb
(ε)(un)

6: Sn := C := C−1 + C0 + C1

Algorithm 2 Simple Jumper protection ((F1, F2, . . .) 7→ (F ′1, F
′
2, . . .))

1: C−1 := C0 := C1 := 1/3
2: C := 1
3: for n = 1, 2, . . . :
4: for ε ∈ {−1, 0, 1}: Cε := (1− J)Cε + (J/3)C

5: ε̄ := (C1 − C−1)/C
6: F ′n := B(ε̄)(Fn)
7: for ε ∈ {−1, 0, 1}: Cε := Cεb

(ε)(Fn(yn))

8: Sn := C := C−1 + C0 + C1

3 Testing probability forecasting systems

To turn the probability integral transforms u1, u2, . . . into a test martingale we
use, as in [10,11,14], the Simple Jumper betting martingale given as Algorithm 1,
where

b(ε)(u) := 1 + ε(u− 0.5). (1)

In the next section we set J := 0.01, as in [14]. For the intuition behind Simple
Jumper, see [14] (and the more complicated Sleepy Jumper is described in detail
in [12, Section 7.1]).

A safer option than the Simple Jumper is the Mean Jumper betting martin-
gale [10], which is defined to be the average of Simple Jumpers over a finite set
J of J including J = 1 (such as J ∈ J := {10−3, 10−2, 10−1, 1}). The inclusion
of J = 1 is convenient since the corresponding Simple Jumper is identical 1,
and so the Mean Jumper never drops in value below 1/ |J |.

4 The protection procedure

Given a prediction algorithm A and a betting martingale S, our protection
procedure produces the prediction algorithm A′ such that S is the likelihood
ratio process dA′/dA.

If the predictive distribution function output by A is Fn = Fn(y), the cor-
responding predictive density is fn = fn(y) = F ′n(y), and the betting function
output by S is bn, the protected predictive density is bn(Fn)fn. It integrates to 1
since bn(Fn)fn = (Bn(Fn))′, where Bn is the indefinite integral Bn(v) :=

∫ v
0
bn

3

of bn, so that B′n = bn. We can see that the distribution function for the
protected algorithm is Bn(Fn).

The procedure of protection is given as Algorithm 2, where

B(ε)(v) :=

∫ v

0

b(ε)(u) du =
ε

2
v2 +

(
1− ε

2

)
v

(cf. (1)). Algorithm 2 uses the fact that the Simple Jumper outputs betting
functions (1) for ε = ε̄. Let us check this fact. According to Algorithm 1, the
value of the martingale at the last step is∑

ε

Cεb
(ε)(u) =

∑
ε

Cε(1 + ε(u− 0.5))

= CE(1 + E(u− 0.5)) + C0 + C−E(1− E(u− 0.5))

= (CE + C0 + C−E) + (CE − C−E)E(u− 0.5)

∝ 1 +
CE − C−E

CE + C0 + C−E
E(u− 0.5),

where we assume that the range of ε is {−E, 0, E}. (At this time E = 1, but we
will use E = 2 in Section 5.) We can see that the slope of the resulting straight
line is

ε :=
CE − C−E

CE + C0 + C−E
E.

In this paper we evaluate the performance of the original and protected
algorithms using the log loss function; namely the loss of a predictive density f
for a realized outcome y is − log f(x) (two pictures in the experimental Section 5
will use base 10 logarithms). It is a proper loss function, meaning that the
optimal expected loss is attained by the true predictive density [4, Section 4].

When S is a Mean Jumper martingale, the protected algorithm is guaranteed
not to lose much as compared with the original algorithm when the quality is
measured by the log loss function: namely, the cumulative log loss for A′ is
at most the cumulative log loss for A plus log |J |. More generally, the price
of protection for a protection procedure is the supremum over all finite data
sequences of the log loss of the protected prediction rule minus the log loss of
the base prediction rule. For the Mean Jumper procedure, the price of protection
is log |J |.

5 A simulation study

We consider a dataset that consists of independent Gaussian observations: the
first 1000 are generated from N(0, 1), and another 1000 from N(1, 1). Our base
prediction algorithm does not know that there is a changepoint at time 1000
and always predicts N(0, 1). The seed of the pseudo random number generator
(in NumPy) is always 2021.

First we run the Simple Jumper martingale (Algorithm 1 with J = 0.01) on
our dataset. The left panel of Figure 1 shows its trajectory; it loses capital before
the changepoint, but quickly regains it afterwards. Its final value is 1.100×1091.

4

0 250 500 750 1000 1250 1500 1750 2000

105

1017

1029

1041

1053

1065

1077

1089

te
st

 m
ar

tin
ga

le

0 250 500 750 1000 1250 1500 1750 2000

108

1027

1046

1065

1084

10103

10122

10141

te
st

 m
ar

tin
ga

le

Figure 1: The Simple Jumper test martingale. Left panel: the standard one
(ε ∈ {−1, 0, 1}). Right panel: ε ∈ {−2, 0, 2}.

0 250 500 750 1000 1250 1500 1750 2000
0

200

400

600

800

1000

1200

1400

cu
m

ul
at

iv
e

lo
g1

0
lo

ss

base
enhanced
oracle

0 250 500 750 1000 1250 1500 1750 2000
0

200

400

600

800

1000

1200

1400

cu
m

ul
at

iv
e

lo
g1

0
lo

ss

base
enhanced
oracle

Figure 2: The cumulative log losses of three prediction algorithms (to the left of
the changepoint the three lines coincide or are visually indistinguishable). Left
panel: ε ∈ {−1, 0, 1}. Right panel: ε ∈ {−2, 0, 2}.

Remark 2. The possibility of losing so much capital before the changepoint
(the value of the Simple Jumper at the changepoint is 0.0114) shows that using
the Simple Jumper is risky. If we want to play safe, we can use the Mean Jumper
instead of the Simple Jumper. As mentioned above, this will bound our loss to
log |J | as compared with the original algorithm.

The cumulative log loss of the protected version of the base prediction al-
gorithm is shown as the green line in the left panel of Figure 2. The black line
corresponds to the base algorithm, and the red line to the impossible oracle
algorithm, which knows the truth and predicts with N(0, 1) before the change-
point and N(1, 1) afterwards. According to Figure 1 (left panel), the difference
between the final values of the black and green lines is about 91.

To understand better the mechanism of protection in this case, notice that
the Simple Jumper outputs betting functions b of the form (1), where ε ∈ [−1, 1]
(usually ε /∈ {−1, 0, 1}). The corresponding predictive distributions b(F)f
(where f is the standard normal density and F its distribution function) are
shown in the left panel of Figure 3 for five values of ε. We can see that our

5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

= -1.0
= -0.5
= 0.0
= 0.5
= 1.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

= -2.0
= -1.0
= 0.0
= 1.0
= 2.0

Figure 3: The protected predictive distributions. Left panel: the range of ε is
{−1,−0.5, 0, 0.5, 1}. Right panel: ε ∈ {−2,−1, 0, 1, 2}.

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.1

0.0

0.1

0.2

0.3

0 250 500 750 1000 1250 1500 1750 2000

0.4

0.2

0.0

0.2

0.4

Figure 4: The protected point predictions (medians of the protected predictive
distributions). Left panel: ε ∈ {−1, 0, 1}. Right panel: ε ∈ {−2, 0, 2}.

range of ε, ε ∈ [−1, 1], is not sufficiently ambitious and does not allow us to
approximate N(1, 1) well.

Replacing the range {−1, 0, 1} for ε by {−2, 0, 2}, we obtain the right panel
of Figure 3. The right-most graph in that panel now looks closer to the density
of N(1, 1). We cannot extend the range of ε further without (1) ceasing to be a
calibrator. (Of course, the calibrator does not have to be linear, but let us stick
to the simplest choices in this version of the paper.)

Using the range {−2, 0, 2} for ε leads to the right panels of Figures 1 and 2.
We can see that in the right panel of Figure 2 the performance of the protected
algorithm is much close to that of the oracle algorithm than in the left panel.

Figure 2 provides useful and precise information, but it is not very intuitive.
A cruder approach is to translate the probabilistic forecasts into point predic-
tions. Figure 4 uses the medians of predictive distributions as point predictions.
In the case of the base algorithm, the prediction is always 0 (the median of
N(0, 1)), for the oracle algorithm it is 0 before the changepoint and 1 after-
wards, and for the protected algorithm the predictions are shown in the figure.
We can see that the right panel of Figure 4 is a better approximation to the

6

oracle predictions.

Remark 3. To compute the point predictions shown in Figure 4, we can use
the representation of the betting function b for the Simple Jumper in the form
(1) with

ε :=
CE − C−E

CE + C0 + C−E
E,

where {−E, 0, E} is the range of ε (so that E = 1 in the left-hand panels and
E = 2 in the right-hand ones). The indefinite integral of the betting function is

B(v) =

∫ v

0

b(u) du =

∫ v

0

(1 + ε(u− 0.5)) du =
(

1− ε

2

)
v+

ε

2
v2 = v− ε

2
v(1−v).

Solving the quadratic equation B(v) = 0.5 we get

v =
ε− 2 +

√
ε2 + 4

2ε
. (2)

Since the distribution function of the protected probability forecast is B(F),
where F = N(0, 1) is the distribution function of the original probability fore-
cast, we obtain the median of the protected distribution as the v quantile of
N(0, 1), with v defined by (2).

Custom-made betting functions

Lemma 1. Let F : R → R be a smooth bijection, and let g be a pdf on its
domain. Then the image of g under the mapping F is the pdf

u 7→ g(F−1(u))

F ′(F−1(u))
.

In terms of the cdf the statement is much easier: if G is the cdf corresponding
to g, so that G′ = g, the image of G under the mapping F is the cdf

u 7→ G(F−1(u)).

We are interested in the case where F is the cdf for N(0, 1) and g is the pdf
of N(1, 1). Then, since

g(y)

f(y)
=

exp(−(y − 1)2/2)

exp(−y2/2)
= exp(y − 1/2),

the optimal betting function is

b(u) =
g(F−1(u))

f(F−1(u))
= exp(F−1(u)− 1/2).

This optimal betting function is shown in Figure 5 in blue. For comparison,
the polynomial calibrators (d + 1)ud are also shown for d = 1 (linear), d = 2
(quadratic), and d = 3 (cubic).

7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
ideal
linear
quadratic
cubic

Figure 5: The optimal betting function after the changepoint (in blue).

0 250 500 750 1000 1250 1500 1750 2000

1017

1046

1075

10104

10133

10162

10191

10220

te
st

 m
ar

tin
ga

le

oracle
ideal custom-made

Figure 6: The oracle and ideal custom-made martingales.

Figure 6 shows the oracle and ideal custom-made martingale; their trajecto-
ries are visually indistinguishable (unless drawn in different colours and widths,
as in the figure) since they are merely different implementations of the same
martingale.

The ideal custom-made martingale is utterly unrealistic since it knows the
precise data-generating distribution. See Algorithm 3, where R is the parameter
(R := 0.001 in this paper), S is the total sleeping capital, and A is the total
active capital; b is the betting function.

Algorithm 3 Sleeping betting martingale ((u1, u2, . . .) 7→ (S1, S2, . . .))

1: S := 1
2: A := 0
3: for n = 1, 2, . . . :
4: S := (1−R)S
5: A := A+RS
6: A := Ab(un)
7: Sn := S +A

8

0 250 500 750 1000 1250 1500 1750 2000

1016

1045

1074

10103

10132

10161

10190

10219

te
st

 m
ar

tin
ga

le

ideal-function custom-made
linear custom-made
quadratic custom-made
cubic custom-made

Figure 7: The ideal-function, linear, quadratic, and cubic custom-made martin-
gales.

SJ 1 SJ 2 oracle ideal linear quadratic cubic

1080

10100

10120

10140

10160

10180

10200

10220

10240

base oracle SJ 1 SJ 2 ideal linear quadratic cubic
101200

101250

101300

101350

101400

101450

Figure 8: The boxplots corresponding to Figures 1, 2, 6, and 7 over 106 trials.
Left panel: The final values of the test martingales. Right panel: The cumulative
log-loss function.

Figure 7 shows the results of applying Algorithm 3 to four betting functions:
the ideal one given in Figure 5 in blue, and the linear, quadratic, and cubic ones
(dotted in Figure 5). Of the polynomial functions, the best one is quadratic;
linear and cubic are worse (and the higher degrees becomes even worse).

The boxplots corresponding to Figures 1, 2, 6, and 7 are shown in Figure 8.
Whereas the previous figures correspond to a fixed seed for the pseudorandom
number generator, Figure 1 summarizes the statistics over the first 106 seeds.

Figure 9 shows the CRPS losses of the base and protected algorithms. The
difference between the two algorithms is more noticeable, since the CRPS loss
function has a natural lower bound, 0.

6 Empirical studies

An ideal dataset for empirical studies would have timestamps for all observa-
tions, so that we can choose a cut-off point in time for dividing the dataset into

9

0 250 500 750 1000 1250 1500 1750 2000

0

200

400

600

800

1000

1200

1400

Figure 9: The CRPS losses of the base and protected algorithms for the simu-
lated data.

a training set (before the cut-off) and a test set (after the cut-off). This is what
is done in [13, Section 5] for the case of classification.

However, in this version of the paper we only consider the Boston Housing
dataset [12, Appendix B.2]. The base prediction algorithm outputs predictions
starting from observation number 6, so that it outputs 500 predictions overall.
For each new object xn, n ≥ 7, we find its 6 nearest neighbours xi, i ∈ {1, . . . , n−
1}, and output as the prediction for the label yn of xn the Gaussian distribution
N(µ, σ), where µ is the average label yi for the 6 nearest neighbours and σ is
the adjusted empirical standard deviation

σ :=

√
1

5

∑
i

(yi − µ)2,

the sum being over the 6 nearest neighbours. At each step n we normalize
the objects by subtracting from each attribute its mean and then dividing it
by its standard deviation (like the standard scaler in scikit-learn and unlike in
[12, Appendix B.3]).

The left panel of Figure 10 shows the performance of a Simple Jumper mar-
tingale; its final value is 4.504 × 1015. The right panel shows how it translates
into the cumulative log loss. Of course, the protected algorithm performs better
(since the martingale gains capital), but the difference does not look impressive.
Perhaps this is because of the large amount of noise in the data; as Figure 2
shows, even the huge difference between predicting N(1, 1) correctly and mis-
taking it for N(0, 1) does not look very significant.

To see the improvement achieved by protection, we can evaluate the quality
of the corresponding point predictions. For the base algorithm, the point pre-
dictions are given simply by µ, and for the protected algorithm, they are defined
as before: see the paragraph containing (2). Table 1 shows that the protected
version performs significantly better. Figure 11 visualizes y − ŷ, where ŷ is
computed by the base or protected algorithms, but it’s a mess. (My general

10

0 100 200 300 400 500

101

103

105

107

109

1011

1013

1015

te
st

 m
ar

tin
ga

le

0 100 200 300 400 500
0

200

400

600

800

cu
m

ul
at

iv
e

lo
g1

0
lo

ss

enhanced predictions
base predictions

Figure 10: Left panel: The Simple Jumper martingale with parameters E = 2
and J = 0.1. Right panel: The cumulative log loss of the base and protected
algorithms.

Table 1: Errors of the base and protected algorithms

absolute error MSE
base algorithm 3.445 5.334

protected algorithm 2.884 4.492

impression is that the protected predictions are better, but it’s difficult to be
sure.)

The left panel of Figure 12, in which the residuals y− ŷ of the base algorithm
are sorted, shows that the protection procedure tends to move the residuals
towards 0, especially in the case of negative residuals. The right panel shows
that this is not just an illusion caused by regression to the mean.

Figure 13 shows the CRPS losses of the base and protected algorithms on the
Boston Housing dataset. In numbers, the mean CRPS for the base algorithm is
2.599 and the mean CRPS for the protected algorithm is 2.440.

0 100 200 300 400 500
30

20

10

0

10

20

pr
ed

ict
io

n
er

ro
rs

base
enhanced

Figure 11: The errors of the base and protected algorithms, as described in text.

11

0 100 200 300 400 500
30

20

10

0

10

20
pr

ed
ict

io
n

er
ro

rs

enhanced
base

0 100 200 300 400 500
30

20

10

0

10

20

pr
ed

ict
io

n
er

ro
rs

base
enhanced

Figure 12: Left panel: The errors of the base and protected algorithms with the
former sorted. Right panel: The errors of the base and protected algorithms
with the latter sorted.

0 100 200 300 400 500
0

200

400

600

800

1000

1200

Figure 13: The CRPS losses of the base and protected algorithms.

7 Conclusion

This section briefly discusses possible directions of further research.
To understand better the potential of the new method, further simulation

studies and, more importantly, empirical studies are required. In particular,
this paper uses only one proper loss function, namely the log loss function.
An interesting alternative is CRPS, or continuous ranked probability score [4,
Section 4.2].

Another direction is to improve the performance of test martingales and,
therefore, protected prediction algorithms in various model situations, similarly
to [11]. The framework of Section 5 is an example of such a model situation.

It is important to get rid of the assumption that the predictive distribution
is continuous, which we made in Section 2. This is needed, e.g., to cover the case
of classification. This could be achieved by adapting the smoothing procedure
[12, (2.20)], which is standard in conformal prediction.

This paper assumes that the observations yn are real numbers, whereas the
standard setting of machine learning is where the observations are pairs (xn, yn).

12

Our method is applicable in this case as well if we assume that the xn are
constant. The cleanest approach, however, would be not to assume anything
about the xn and use the game-theoretic foundations of probability [8]. For
the game-theoretic treatment of the probability integral transformation, see
[2, Theorem 2(b)].

The method used in this paper, Simple Jumper, ignores the xn, and so it is
only about calibration (and not resolution, as described in [1]). We can make our
methods depend on x (e.g., use different Simple Jumpers for men and women).

Gneiting et al. [3, Section 3.1] discuss different deviations from perfect cali-
bration. In this paper our base calibrators only gambled against small or large
PIT values: see (1). We could also gamble against the PIT values being too
categorical (or too timid) by using, instead,

b(ε)(u) :=

{
1− ε(u− 0.25) if u ≤ 0.5

1 + ε(u− 0.75) if u ≥ 0.5.

Acknowledgments

Glenn Shafer’s and Nell Painter’s advice is gratefully appreciated. This work
has been supported by Amazon and Stena Line.

References

[1] A. Philip Dawid. Probability forecasting. In Samuel Kotz, Norman L. John-
son, and Campbell B. Read, editors, Encyclopedia of Statistical Sciences,
volume 7, pages 210–218. Wiley, New York, 1986.

[2] A. Philip Dawid and Vladimir Vovk. Prequential probability: Principles
and properties. Bernoulli, 5:125–162, 1999.

[3] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. Probabilis-
tic forecasts, calibration and sharpness. Journal of the Royal Statistical
Society B, 69:243–268, 2007.

[4] Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules,
prediction, and estimation. Journal of the American Statistical Association,
102:359–378, 2007.

[5] Andrei N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer, Berlin, 1933. English translation: Foundations of the Theory of
Probability. Chelsea, New York, 1950.

[6] Paul Lévy. Théorie de l’addition des variables aléatoires. Gauthier-Villars,
Paris, 1937. Second edition: 1954.

[7] Murray Rosenblatt. Remarks on a multivariate transformation. Annals of
Mathematical Statistics, 23:470–472, 1952.

13

[8] Glenn Shafer and Vladimir Vovk. Game-Theoretic Foundations for Proba-
bility and Finance. Wiley, Hoboken, NJ, 2019.

[9] Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine
Learning, 35:247–282, 1999.

[10] Vladimir Vovk. Testing for concept shift online, On-line Compression Mod-
elling project (New Series), http://alrw.net, Working Paper 31, Decem-
ber 2020.

[11] Vladimir Vovk. Conformal testing in a binary model situation, On-line
Compression Modelling project (New Series), http://alrw.net, Working
Paper 33, April 2021.

[12] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning
in a Random World. Springer, New York, 2005.

[13] Vladimir Vovk, Ivan Petej, and Alex Gammerman. Protected probabilistic
classification, On-line Compression Modelling project (New Series), http:
//alrw.net, Working Paper 35, July 2021.

[14] Vladimir Vovk, Ivan Petej, Ilia Nouretdinov, Ernst Ahlberg, Lars Carlsson,
and Alex Gammerman. Retrain or not retrain: Conformal test martingales
for change-point detection, On-line Compression Modelling project (New
Series), http://alrw.net, Working Paper 32, February 2021.

14

http://alrw.net
http://alrw.net
http://alrw.net
http://alrw.net
http://alrw.net

	Introduction
	Probability integral transformation
	Testing probability forecasting systems
	The protection procedure
	A simulation study
	Empirical studies
	Conclusion
	References

