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How can forgetfulness and
efficiency coexist? Aren’t these
two concepts absolute opposites?
Far from it.

Mike Byster, “The Power of
Forgetting”, 2014

Abstract

This paper places conformal testing in a general framework of statistical hypoth-
esis testing. A standard approach to testing a composite null hypothesis H is to
test each of its elements and to reject H when each of its elements is rejected.
It turns out that we can fully cover conformal testing using this approach only
if we allow forgetting some of the data. However, we will see that the standard
approach covers conformal testing in a weak asymptotic sense and under restric-
tive assumptions. I will also list several possible directions of further research,
including developing a general scheme of online testing.
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1 Introduction

Conformal testing is an interesting application of conformal prediction. It turns
the p-values output by conformal prediction into dynamic procedures for testing
statistical hypotheses. This paper is a high-level discussion of dynamic testing
of statistical hypotheses, in an attempt to place conformal testing in the general
theory of statistical hypothesis testing.

In conformal testing, we are usually interested in testing the exchangeability
model, because of its importance in machine learning. In this paper, however,
we will often consider testing other statistical models, which will shed new light
on the relation of conformal testing to alternative approaches.

Section 2 briefly reviews the history of the online approach to hypothe-
sis testing. Formal exposition starts in Sect. 3, which is a summary of three
approaches to online testing, including, in Sect. 3.3, a summary of conformal
testing. Section 4 introduces a general scheme covering all three approaches.
Section 5 points out a seemingly unnatural feature of conformal testing, which
is forgetting some of the data (see Remark 3.7 at the end of Sect. 3). Section 6
explains that the extent to which we need forgetting is limited (albeit under
strong assumptions). Section 7 illustrates some of the points discussed in the
earlier sections using computer simulations, and Sect. 8 concludes.

2 From batch to online hypothesis testing

The classical theory of statistical hypothesis testing, as created by Student [24],
Fisher [7], Egon Pearson, and Neyman [14], was developed in the batch set-
ting (in the terminology of modern machine learning). Given a batch of data
z1, . . . , zN , we would like to test the hypothesis (known as the null hypothesis)
that z1, . . . , zN were generated from a given probability measure (in which case
the null hypothesis is called simple) or a probability measure from a given family
of probability measures (in which case the null hypothesis is called composite).
The number of observations N (sample size) is chosen in advance. The classical
theory is still dominant in statistical hypothesis testing.

Remark 2.1. I do not list Karl Pearson because he was interested in statistical
tests, such as his famous χ2 test [15], that only have an asymptotic (“large-
sample”) justification. The first exact (“small-sample”) test for an interesting
composite null hypothesis was developed by Student [24], whose results were
rigorously proved and greatly developed by Fisher [7, 8, 9].

The assumption that N is chosen in advance was removed during World
War II by Wald [30, 31] in the US, with research along similar lines going on
in the UK (Barnard [2]). However, Wald’s picture was not fully dynamic: he
just made N a stopping time when the decision (rejection or acceptance of
the null hypothesis) is announced. The dynamic interpretation in which the
likelihood ratio is interpreted directly as the evidence in favour/against the
null/alternative hypothesis was given by Barnard [3, pp. 459–460 and the last
paragraph]. More recently, this interpretation has been widely discussed under
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the name of the law of likelihood [1]. (The term “law of likelihood” was coined
by Hacking [11, Chap. 5], but Hacking was only interested in its special case,
namely in comparison of the likelihood ratio with 1.)

The dynamic way of testing a simple null hypothesis has its origin in Ville’s
[25] notion of a martingale. The value of a test martingale (i.e., a nonnegative
martingale with initial value 1) can be interpreted as the amount of evidence
found against the null hypothesis. Ville did not have this interpretation in
his book (infinite sequences were his main object of interest), but it formed
gradually in the algorithmic theory of randomness; e.g., it is stated explicitly in
[29]. This interpretation is the basis of [20, 21]. It is closely related to Barnard’s
[3] paper mentioned earlier, since a test martingale can often be represented in
the form of a likelihood ratio.

Remark 2.2. In particular, for simple null hypotheses, a test martingale is a
likelihood ratio. Therefore, it has a very convincing Bayesian interpretation: if
a priori we regard the null and the alternative (the numerator of the likelihood
ratio) as equally probable, the posterior probability of the null will be 1/(L+1),
where L is the likelihood ratio.

How do test martingales work for composite hypotheses? The standard way
of testing a composite null hypothesis in the algorithmic theory of randomness
is to test against each element of the composite null and then take the infimum
of the resulting randomness deficiencies. See, e.g., [26], [28, Theorem 2], [4,
Sect. 4], and [10, Theorem 4.2.1]. This suggests gambling against all values of
the parameter θ (indexing the null hypothesis) obtaining a test martingale Sθ

for each θ and then taking the infimum over θ. We will do this in Sect. 5.

3 Three modern ways of dynamic hypothesis
testing

In this section we will discuss three approaches, by now standard, to dynamic
hypothesis testing. Only one of them, conformal testing, can be, and has been,
used for testing the general exchangeability model (the standard statistical
model in machine learning).

First we introduce our framework and notation. Let (Ω,F) be a measurable
space equipped with a family Pθ, θ ∈ Θ, of probability measures on (Ω,F). We
refer to (Ω,F) as our sample space and to (Pθ | θ ∈ Θ) as our statistical model.
We are not assuming that the model is parametric (i.e., that Θ is a subset of a
finite-dimensional Euclidean space Rn); e.g., (Pθ | θ ∈ Θ) may be the set of all
exchangeable probability measures on R∞.

Our random observations are Z1, Z2, . . . ; these are random elements on
(Ω,F) taking values in a measurable space Z, which is our observation space.
Let z1, z2, . . . be the realizations of Z1, Z2, . . . .

Set Fn := σ(Z1, . . . , Zn) for n = 0, 1, . . . , i.e., Fn is the σ-algebra generated
by the first n observations. The interpretation of Fn is the full information
available by time n. The sequence (Fn) of σ-algebras is called the natural
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filtration. In general, a filtration is an increasing sequence of σ-algebras, and
we will often be interested in filtrations (F ′

n) that are poorer than the natural
filtration (Fn) in the sense that F ′

n ⊂ Fn for some n (typically, for all n ≥ 1).

Remark 3.1. It is more customary to start from a filtration (Fn) and require
that each Zn be measurable w.r. to Fn for each n. This is a more general setting
allowing further sources of information apart from the observations Z1, Z2, . . . .
We will, however, assume that the observations are the only source of informa-
tion (and will even allow forgetting some aspects of the observations).

We regard (Pθ | θ ∈ Θ) as our null hypothesis, and we would like to test
whether z1, z2, . . . were really generated from one of the Pθ.

If the statistical model contains only one probability measure P , online test-
ing consists in choosing a test martingale Sn, n = 0, 1, . . . , i.e., a sequence
of random variables such that Sn is Fn-measurable, S0 = 1, and, for each
n = 0, 1, . . . ,

E(Sn+1 | Fn) = Sn.

We regard Sn as the capital at time n of a gambler betting against the null hy-
pothesis P . Next we will discuss three known ways of generalizing this definition
to composite null hypotheses.

3.1 Element-wise testing

The most basic and standard generalization is to gamble against each Pθ sep-
arately and to regard the null hypothesis falsified to the degree that all of Pθ

have been falsified. Formally, for each θ ∈ Θ, we fix a test martingale Sθ, and
we then define

Sn := inf
θ∈Θ

Sθ
n. (1)

Any process S that can be obtained in this way will be referred to as an element-
wise test, and I will sometimes refer to this procedure of testing as element-wise
testing.

Remark 3.2. The function Sθ
n(ω) of θ ∈ Θ, n, and ω ∈ Ω is not assumed to be

measurable in θ, and so Sn is not a random variable in general. (And even if
Sθ
n(ω) were assumed measurable in θ, taking an infimum over an uncountable

set may destroy measurability.)

A special case of element-wise testing (1) is used in [17], where each Sθ is
defined as the likelihood ratio dQ/dPθ and Q is a probability measure that
does not depend on θ (while dependence on θ is allowed in element-wise testing
in general). We will refer to this special case as simple element-wise testing.

Remark 3.3. Ramdas et al. [17] apply their simple element-wise testing scheme
to testing exchangeability, but, as we explain in [27, Sect. 9.2.1] (see, especially,
Remarks 9.7 and 9.8), this scheme (based on the maximum likelihood estimate)
is applicable to testing exchangeability only in toy situations.
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3.2 Pivotal testing

The second approach goes back to Fisher’s fiducial statistics and was widely
promoted by, e.g., George Barnard and Donald Fraser. Recent work includes
Peter McCullagh’s (see [13]) and the work on confidence distributions, including
confidence predictive distributions [19, 22].

An online pivotal model is a pair (N,Q), where N is a measurable mapping
(normalizing transformation) N : Z∗ → Z′ to some measurable space Z′ and Q
is a probability measure on (Z′)∞. We say that it agrees with our statistical
model (Pθ | θ ∈ Θ) if the distribution of the random sequence

(Z ′
1, Z

′
2, . . . ) := (N(Z1), N(Z1, Z2), N(Z1, Z2, Z3), . . . ), (2)

where (Z1, Z2, . . . ) ∼ Pθ, is Q (in particular, it does not depend on the pa-
rameter θ). We might say that it strongly agrees with our statistical model
if {Pθ | θ ∈ Θ} contains all probability measures on (Ω,F) for which (2) is
distributed as Q; however, we will not use this stronger notion.

Remark 3.4. The definition of an online pivotal model can be trivially extended
by allowingN to depend on the parameter value θ ∈ Θ. Such an extension would
even better agree with the term “pivot”, since in statistics pivotal quantities
are allowed to depend on θ (those that do not depend on θ are usually called
“ancillary statistics”, but a disadvantage of the term “ancillary statistic” is that
it is usually associated with conditional inference). In this paper we will only
be interested in examples where the normalizing transformation N does not
depend on θ.

Let me give three simple examples of online pivotal models. The full Gaus-
sian pivotal model is (N,Q) where

N(z1) := 0,

N(z1, . . . , zn) := (zn − z1)/(z2 − z1) for n ≥ 2,

and Q is the push-forward of the standard Gaussian measure N∞
0,1 on R∞ under

the mapping (Z1, Z2, . . . ) 7→ (Z ′
1, Z

′
2, . . . ) defined by (2). (Let us set, e.g., 0/0 :=

0, here and below.) This online pivotal model agrees with the 2-parameter
Gaussian statistical model (N∞

µ,σ2 | µ ∈ R, σ > 0) (where Nµ,σ2 is parametrized

by the mean µ and variance σ2). The other two example are, in some sense,
submodels of this model.

The Gaussian pivotal model with variance 1 is (N,Q) where

N(z1, . . . , zn) := zn − z1 for n ≥ 1, (3)

and Q is the push-forward of N∞
0,1 under (2). This online pivotal model agrees

with the 1-parameter Gaussian statistical model (N∞
µ,1 | µ ∈ R) with the vari-

ance fixed to 1. The Gaussian pivotal model with mean 0 is (N,Q) where

N(z1, . . . , zn) := zn/z1 for n ≥ 1,
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and Q is the push-forward of N∞
0,1 under (2). This online pivotal model agrees

with another 1-parameter Gaussian statistical model, (N∞
0,σ2 | σ > 0), with the

mean fixed to 0.
For further examples, see [13] (Gauss linear model) and [16, Sect. 4.1].
An online pivotal model reduces (perhaps not perfectly) a composite null

hypothesis to a simple one, and gambling against a simple null hypothesis is
unproblematic. Formally, set

F ′
n := σ(Z ′

1, . . . , Z
′
n) (4)

for n = 0, 1, . . . , so that the filtration (F ′
n) is typically poorer than the natural

filtration (Fn). Choose a test martingale S w.r. to the filtration (F ′
n) and

probability measure Q. We will then refer to S as a pivotal test martingale.
Standard uses of online pivotal models are for producing prediction sets [13],

confidence predictive distributions ([19, Sect. 12.4] and [22]), and confidence
distributions [6, 32, 19]. However, their adaptation to testing is straightforward,
and is analogous to the step from conformal prediction to conformal testing.

3.3 Conformal testing

The exposition in this paper is intended to be self-contained (apart from the
definition of Bayes–Kelly test martingales in Sect. 7), but for further details
about online compression models, see [27, Part IV].

An online compression model is a quadruple (Σ,□, F,B), where

� Σ is a measurable space, which is called the summary space and whose
elements are called summaries;

� □ ∈ Σ is a fixed summary called the empty summary ;

� F : Σ× Z → Σ is a measurable function called the forward function;

� B is a Markov kernel mapping Σ to the probability measures on Σ × Z
such that

B(F−1(σ) | σ) = 1

for each σ ∈ F (Σ× Z).

An alternative, often more convenient (especially for defining specific examples)
representation of online compression models is in terms of the corresponding
repetitive structures. Namely, the repetitive structure corresponding to an online
compression model (Σ,□, F,B) consists of the summarising statistic t : Z∗ → Σ
defined by

t() := □,

t(z1, . . . , zn) := F (t(z1, . . . , zn−1), zn) n = 1, 2, . . . ,

and the inverse transformation mapping each σ ∈ t(Zn) for each n ∈ {1, 2, . . . }
to the probability measure Pn(σ) on Zn defined by
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Pn(dz1, . . . ,dzn | σn) := B(dσ0,dz1 | σ1)B(dσ1,dz2 | σ2) . . .

B(dσn−2,dzn−1 | σn−1)B(dσn−1,dzn | σn).

We say that a probability measure P on the sample space agrees with the online
compression model if, for each n, Pn is a version of the conditional probability,
under P , of the first n observations given their summary. And we say that
a statistical model (Pθ | θ ∈ Θ) agrees with the online compression model if
each Pθ does. (As in the case of online pivotal models, we do not require that
(Pθ | θ ∈ Θ) contain every probability measure that agrees with the online
compression model.)

A conformity measure in an online compression model (Σ,□, F,B) is a mea-
surable function A : Σ × Z → R. The p-value generated by the corresponding
conformal predictor after observing (z1, . . . , zn) ∈ Zn is

pn := BZ ({z ∈ Z | A(σn, z) < A(σn, zn)} | σn)

+ τnBZ ({z ∈ Z | A(σn, z) = A(σn, zn)} | σn) , (5)

where BZ is the marginal distribution

BZ(E | σ) := B(Σ× E | σ)

and τn ∈ [0, 1] (in applications, τn is a number produced by a random number
generator).

The main property of validity of conformal prediction is that the p-values
p1, p2, . . . output according to (5) are independent and distributed uniformly on
[0, 1] provided the observations are generated from a probability measure that
agrees with the online compression model and the random numbers τ1, τ2, . . . are
distributed uniformly on [0, 1] and independent of the observations and between
themselves. Let F ′

n be the σ-algebra generated by p1, . . . , pn,

F ′
n := σ(p1, . . . , pn). (6)

A conformal test martingale is a test martingale w.r. to the filtration (F ′
n) and

the uniform probability measure on (p1, p2, . . . ) ∈ [0, 1]∞ (the latter determining
the probability measure on σ(∪nF ′

n) underlying the martingale).
Now we can give four standard examples of online compression models, which

we do in terms of the corresponding repetitive structures. The exchangeability
model has σn = *z1, . . . , zn+ as the summary of a data sequence (z1, . . . , zn), and
Pn(σn) is the uniform distribution on all orderings of σn (a fuller definition, deal-
ing carefully with the possibility of repetitions among the elements of σn, is that
Pn(σn) is the push-forward of the uniform probability measure on the n! permu-
tations π : {1, . . . , n} → {1, . . . , n} under the mapping π 7→ (zπ(1), . . . , zπ(n))).
In fact, in all but one of our four examples, Pn(σn) will be the uniform proba-
bility measure on t−1

n (σn), where tn is the restriction of t to Zn.
In the remaining three examples, the observation space is the real numbers,

Z := R. The full Gaussian compression model has the summarizing statistic

σn = tn(z1, . . . , zn) :=

(
n∑

i=1

zi,

n∑
i=1

z2i

)
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(equivalently, the summary of a data sequence z1, . . . , zn consists of its empirical
mean and standard deviation). The summarizing statistic for the Gaussian
compression model with variance 1 is

σn = tn(z1, . . . , zn) :=

n∑
i=1

zi, (7)

and for the Gaussian compression model with mean 0 it is

σn = tn(z1, . . . , zn) :=

n∑
i=1

z2i .

The conditional distribution Pn(σn) on t−1
n (σn) is defined to be the uniform

distribution in the case of the full Gaussian compression model and Gaussian
compression model with mean 0; in both of these cases t−1

n (σn) is a sphere, and
the notion of the uniform distribution is meaningful and unambiguous. For the
Gaussian model with variance 1, whose summarizing statistic is given by (7),
t−1
n (σn) is not compact for n > 1, and the uniform distribution on it does not
even exist; we define Pn(σn) as the probability measure on t−1

n (σn) with density
proportional to

exp

(
−1

2

n∑
i=1

z2i

)
. (8)

Remark 3.5. The full Gaussian compression model (usually referred to simply
as the Gaussian compression model) is the most general of our three Gaussian
compression models, but it is easy to extend to a standard model of linear
regression, the Gauss linear model, both in the pivotal [13] and conformal [27,
Sect. 11.4.2] cases.

It is interesting that the p-values p3, p4, . . . output by any of these three
Gaussian compression models are almost surely deterministic (do not depend
on the random numbers τ), while p1 has the uniform distribution on [0, 1]. The
second p-value p2 behaves like p1 in the case of the full Gaussian compression
model and like p3, p4, . . . for the other two models.

Each Gaussian probability measure N∞
µ,σ2 agrees with the full Gaussian com-

pression model, each N∞
µ,1 agrees with the Gaussian compression model with

variance 1, and each N∞
0,σ2 agrees with the Gaussian compression model with

mean 0. The density (8) and the uniform density in the other two cases can be
obtained from this agreement.

The example of the Gaussian model with variance 1 will be most useful for
us in this paper (see Sect. 5 below). In the case of pivotal models it is clearly the
simplest one among those that we discussed. In the case of online compression
modelling, the summarizing statistic (7) is also the simplest one, but, unusually,
the conditional distributions Pn(σn) are not uniform (another such example is
discussed in [27, Sect. 11.3.7]).

Conformal testing is able to produce non-trivial conformal test martin-
gales under the standard assumption of exchangeability for two reasons [27,
Sect. 8.6.1]:
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� these conformal test martingales use a filtration that is poorer than the
natural filtration generated by the observations Z1, Z2, . . . (we are forget-
ting some information);

� the martingales are randomized, in the sense of depending on the random
numbers τn.

In this paper I will concentrate on the first reason (which appears to be more
important). To get rid of the second reason, we will consider an online com-
pression model that does not require it (in the sense that the p-values do not
depend on the τs apart from the first one, p1).

Remark 3.6. Pivotal testing uses, similarly to conformal prediction, a poorer
filtration. However, the normalizing transformation (2) is deterministic. If we
allow it to be randomized, conformal testing, formally, becomes a special case
of pivotal testing.

Remark 3.7. The expression “unnatural feature” used in Sect. 1 referred to
the underlying filtration (F ′

n) defined by (6) being different from the natural
filtration. (Of course, the filtration (F ′

n) defined by (4) also involves forgetting.)

4 General scheme of online testing

In this section we sketch (somewhat informally) a general testing scheme cover-
ing conformal testing and the other two approaches considered in the previous
section. When processing the random observations Z1, Z2, . . . while testing
(Pθ | θ ∈ Θ) as our null hypothesis, we proceed as follows.

1. We use a random number generator producing independent τ1, τ2, . . . that
are uniformly distributed on [0, 1]; the sequence of τ is required to be
independent of Z1, Z2, . . . for each θ ∈ Θ.

2. We then transform the sequence of observations z1, z2, . . . and each pa-
rameter value θ ∈ Θ to zθ1 , z

θ
2 , . . . : each zθn is a function of θ and z1, . . . , zn

that is measurable for each fixed value of θ (no measurability in θ is re-
quired). Typically this step reduces the information contained in z1, z2, . . .
(for each θ).

3. Next, for each θ ∈ Θ, we gamble against the reduced sequence zθ1 , z
θ
2 , . . .

and τ1, τ2, . . . obtaining a test martingale Sθ (w.r. to the reduced filtra-
tion extended by the τ) under Pθ. Equivalently, we gamble against the
extended observations (zθn, τn). Our capital Sθ

n at time n is a function of
(zθ1 , τ1), . . . , (z

θ
n, τn).

4. Finally, we use (1) as the amount of evidence found against (Pθ) at time
n.

A natural question is whether this scheme is really general, but it does cover
the three methods described in the previous section. These are special cases:
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� In the simple element-wise testing scheme of [17] (see Sect. 3.1), item 1
is not needed, the transformation in item 2 is identical (i.e., there is no
transformation), and the gambling method in item 3 is to use likelihood
ratios with Pθ in the denominator and the same probability measure (a
mixture of Pθs) in the numerator.

� In the neo-fiducial testing of Sect 3.2, item 1 is not needed. The transfor-
mation in item 2 and gambling in item 3 do not depend on θ, and item 4
is not needed.

� In conformal testing, the transformation in item 2 and gambling in item 3
do not depend on θ. Therefore, item 4 is not needed. For some online
compression models, such as the Gaussian models discussed earlier, item 1
is also not needed (apart from the first few p-values).

5 Need for forgetting

Conformal testing often works well for testing the exchangeability model [27,
Part III]. On the other hand, it is obvious that, without forgetting, no suc-
cessful gambling is possible against the null hypothesis of exchangeability, or
even against the stronger model of randomness [27, Sect. 2.1.1]: if under the
null hypothesis there are no restrictions on the probability distribution of one
observation, our capital can only go down (or stay at the same level). This is
discussed in detail in [27, Sect. 8.6.1] and stated in [17] as Theorem 17.

Therefore, it is essential to allow the test martingales in the element-wise
scheme to depend on the value of the parameter θ if we want to avoid forgetting.
In this section we will give an example where even such dependence does not
allow us to recover results attainable by pivotal and conformal methods.

As before, we observe a sequence Z1, Z2, · · · ∈ Z generated by a probability
measure in a family (Pθ | θ ∈ Θ), and we would like to have an online measure
of evidence found against (Pθ | θ ∈ Θ) as null hypothesis. For each θ, we take
a test martingale Sθ w.r. to Pθ and the natural filtration F = (Fn) (i.e., Fn is
generated by Z1, . . . , Zn), and consider the element-wise test (1) as the amount
of evidence found against (Pθ | θ ∈ Θ) at time n.

5.1 An example for pivotal testing

The following simple example shows the inadequacy of element-wise tests. We
are testing the Gaussian pivotal model with variance 1, or the statistical model
(N∞

µ,1 | µ ∈ R). The normalizing transformation (3) acts on the random obser-
vations as

Z1, Z2, . . . 7→ Z ′
1, Z

′
2, . . . ,

9



where Z ′
n := Zn − Z1, so that Z ′

n ∼ N0,2 for n ≥ 2. Consider the process

Sn :=


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and Z ′
2 ∈ [−1, 1]

0 if n ≥ 2 and Z ′
2 /∈ [−1, 1].

It can be considered both as a function of Z1, Z2, . . . and as a function of
Z ′
1, Z

′
2, . . . , but it is a martingale only as a function of Z ′

1, Z
′
2, . . . (i.e., w.r. to

the reduced filtration (F ′
n), where F ′

n is generated by Z ′
1, . . . , Z

′
n). If we express

it as a function of Z1, Z2, . . . , it becomes

Sn =


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and Z2 − Z1 ∈ [−1, 1]

0 if n ≥ 2 and Z2 − Z1 /∈ [−1, 1].

(9)

Let us check that S is not covered by element-wise testing, i.e., Sn ≤ infµ S
µ
n

is violated for some n, Sµ being a natural test martingale (i.e., a test martingale
w.r. to the natural filtration) under N∞

µ,1. In fact, we will see that Sn is not
dominated by any natural test martingale Sµ

n at times n = 1 and n = 2. Indeed,
if it is, we must have

Sµ
1 (z1) ≥ max

(
Nµ,1([z1 − 1, z1 + 1])

N0,2([−1, 1])
, 1

)
for any z1 ∈ R. Notice that

Nµ,1([z1 − 1, z1 + 1])

N0,2([−1, 1])
> 1

holds for a nontrivial range of z1: for example,

Nµ,1([µ− 1, µ+ 1])

N0,2([−1, 1])
=

N0,1([−1, 1])

N0,2([−1, 1])
≈ 1.31 > 1.

Therefore, the expectation of Sµ
1 (z1) under z1 ∼ Nµ,1 must exceed 1, which

contradicts Sµ being a test martingale.

5.2 An example for conformal testing

Our example for conformal testing will be a simple modification of the example
for pivotal models given in the previous subsection. We again consider the
Gaussian model with variance 1, but now it is the online compression model
with summarizing statistic (7) and conditional density (8). The equality

z21 + z22 =
(z1 + z2)

2

2
+

(z1 − z2)
2

2

shows that P2(σ2) generates (Z1, Z2) with Z2 − Z1 ∼ N0,2, and so

p2 = Φ((Z2 − Z1)/
√
2) (10)
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(Φ standing for the standard Gaussian cumulative distribution function) if we
choose A(σ, z) := z as conformity measure.

Now we have a conformal test martingale

Sn :=


1 if n ≤ 1

1/N0,2([−1, 1]) if n ≥ 2 and p2 ∈ [Φ(−1/
√
2),Φ(1/

√
2)]

0 if n ≥ 2 and p2 /∈ [Φ(−1/
√
2),Φ(1/

√
2)]

in analogy with (9); in fact, as function of Z1, Z2, . . . it is identical to (9). As
before, it is not dominated by any natural martingale Sµ w.r. to any N∞

µ,1.

5.3 Another way of forgetting

The main concept of forgetting studied in this paper is replacing the natural
filtration (Fn) by poorer filtration (F ′

n). In the case of the pivotal models, this
is the only natural kind of forgetting. For the Gaussian model with variance
1, we forget the first observation z1, and it leads to forgetting in the sense of
reducing the filtration, (4).

However, in the case of online compression models, the very definition of such
models is sometimes explained in terms of forgetting: the summary t(z1, . . . , zn)
represents all useful information contained in the data sequence z1, . . . , zn; the
rest is noise and can be forgotten. In statistical terminology, the summary
is a sufficient statistic. Let me call this “forgetting2”. This is very different
from forgetting (“forgetting1”) in the sense of reducing the filtration, (6). (This
terminology is used only in this subsection; elsewhere, “forgetting” always means
“forgetting1”.)

The main difference between forgetting1 and forgetting2 is that the latter is
justified when we fully trust the model, while the former is used when we are
testing the model. The information in z1, . . . , zn that is not contained already
in the summary is noise only under the model, but has great diagnostic value
for testing the model; on the other hand, the summary is of limited use for
testing (or even completely useless, as when testing exchangeability for a finite
time horizon).

6 Element-wise testing partially works for a
fixed horizon

In this section we give theoretical results showing that the power of forgetting
is limited, unfortunately in a very weak sense.

6.1 Finite horizon

We start from a simple result for a finite horizon N (i.e., we have only N
observations, or are only interested in the first N observations).

11



Proposition 6.1. Let N ∈ {1, 2, . . . }, and let (Sθ) be a family of test mar-
tingales w.r. to the same filtration (perhaps not natural) and a statistical model
(Pθ). Then there exists a family of natural test martingales (S̃θ) such that

inf
θ∈Θ

S̃θ
N = inf

θ∈Θ
Sθ
N .

Of course, (Sθ) being a family of test martingales w.r. to (Pθ) means that
Sθ is a test martingale w.r. to Pθ for each θ. For example, (Sθ) may be a family
of test martingales from the scheme of Sect. 4. The natural element-wise test
infθ S̃

θ
n in Proposition 6.1 can sometimes be less than the original element-wise

test infθ S
θ
n at some time n < N , but it will eventually catch up (always, not

just almost surely).

Proof of Proposition 6.1. Let us fix a family of test martingales (Sθ). The ex-
pectation of our capital Sθ

N at step N is 1, and for each θ we get a natural
test martingale S̃θ

n, n ∈ {0, 1, . . . , N}, by setting S̃θ
N := Sθ

N and averaging
backwards:

S̃θ
n := Eθ(S̃θ

n+1 | Fn), n = N − 1, . . . , 0, (11)

where Eθ stands for the expectation w.r. to Pθ.

Suppose we are given a test martingale S that is not natural, such as the
ones used in our examples in Sect. 5.1 and Sect. 5.2. A disadvantage of Proposi-
tion 6.1 is that for steps before N the backward averaging (11) may give a result
different from (and therefore not dominating) Sn, n < N . Another disadvantage
of Proposition 6.1 is that it ignores the complexity, in any sense (computational,
descriptional, etc.), of the natural test martingale S̃. While S may be very easy
to define and independent of θ, such as a Composite Jumper conformal test
martingale [27], S̃ will depend on θ and may be much more complicated.

The right-hand side of the definition (1) of element-wise testing involves infθ
and so does not even have to be measurable, as we already mentioned, and in
some sense it is not even well-defined when Θ is uncountable: for each θ ∈ Θ the
corresponding test martingale is defined to within a Pθ-null set, which makes
the definition of infθ non-invariant w.r. to the choice of versions of conditional
distributions. (For rich spaces Θ and Ω, we can even make infθ S̃

θ
n = 0, n < N ,

by an awkward choice of versions of the conditional expectations in (11).)
The idea in the proof of Proposition 6.1 can also be applied to randomized

test martingales (such as conformal test martingales under the exchangeability
model). Suppose Sn = Sθ

n does not depend on θ (as conformal test martingales).
We can then average SN w.r. to the random numbers τ1, . . . , τN and after that
apply averaging w.r. to the σ-algebras Fn:

S̃θ
N := Eτ (SN ), S̃θ

n := Eθ
(
S̃θ
N | Fn

)
, n = N − 1, . . . , 0, (12)

where, of course, Eτ refers to averaging over the random numbers (produced
independently from the uniform distribution on [0, 1]); of course, there is no
actual dependence of S̃θ

n on θ for n := N . We will then have

inf
θ∈Θ

S̃θ
N = Eτ (SN ).

12



6.2 Infinite horizon

One more disadvantage of Proposition 6.1 is that it is only applicable to a finite
horizon. We can generalize it by allowing N to be, e.g., a bounded stopping
time, but a natural question is whether it holds asymptotically at infinity for
the infinite horizon N := ∞. The next proposition is a step in this direction,
but it is very restrictive (as we will discuss momentarily).

Proposition 6.2. Suppose that the parameter set Θ is finite and that different
Pθ in the statistical model (our null hypothesis) (Pθ) are mutually singular.
Let (Sθ) be a family of test martingales w.r. to the same filtration and (Pθ),
and let ϵ > 0 (be arbitrarily small). Then there exists a family of natural test
martingales (S̃θ) such that

lim inf
n→∞

inf
θ
S̃θ
n ≥ (1− ϵ) lim sup

n→∞
inf
θ
Sθ
n (13)

a.s. under any probability measure Pθ from the null hypothesis.

As in the case of Proposition 6.1, Proposition 6.2 says that, even when a
natural test martingale S̃θ falls below the original test martingale Sθ, it will
eventually catch up (or at least almost catch up, to within any ϵ on the relative
scale). The most restrictive condition in Proposition 6.2 is that Θ is finite
(although it can be as dense as we wish).

Another restrictive condition in Proposition 6.2 is that different Pθ are re-
quired to be mutually singular. This condition often holds for interesting sta-
tistical models; for example, in the IID case it follows from Kakutani’s theorem
[12] that Pθ corresponding to different θ are either identical or mutually sin-
gular. Moreover, we can often even identify θ in the limit almost surely given
a sequence observations generated from Pθ (formally, there exists a strongly
consistent estimator for θ).

In (13) we have lim inf and lim sup instead of just lim. For the lim inf it is
not essential, and we can replace it by lim, meaning that the limit will exist
almost surely (although it can be ∞). Having lim sup is essential, but let me
discuss it at the end of the proof.

Proof of Proposition 6.2. By Doob’s convergence theorem [23, Corollary 7.4.3],

Sθ
∞ := lim

n→∞
Sθ
n (14)

exists almost surely under Pθ. Without loss of generality we assume that its
Eθ-expectation is 1 (its expectation is at most 1 by Fatou’s lemma, and we can
scale it up if the expectation is below 1). For each θ ∈ Θ let us define the
natural test martingale

S̃θ
n := Eθ(Sθ

∞ | Fn), n = 0, 1, 2, . . . ; (15)

remember that this process is a test martingale only under Pθ. By Lévy’s
theorem [23, Theorem 7.4.3] we have

S̃θ
n → Sθ

∞

13



a.s. under Pθ. Since this convergence holds only Pθ-almost surely, we need to
“regularize” S̃θ to ensure its desired behaviour under Pθ′ for θ′ ̸= θ.

For each pair θ, θ′ ∈ Θ with θ ̸= θ′, fix a natural test martingale Sθ,θ′
w.r.

to Pθ such that
lim inf
n→∞

Sθ,θ′
= ∞ Pθ′ -a.s.

Such a test martingale can be defined as the likelihood ratio dPθ′/ dPθ if Pθ′

is locally absolutely continuous w.r. to Pθ (see [23, Theorem 7.6.2]) and as an
obvious modification of the likelihood ratio otherwise. Now we can redefine

S̃θ
n := (1− ϵ)S̃θ

n +
ϵ

|Θ| − 1

∑
θ′∈Θ\{θ}

Sθ,θ′

n (16)

(assuming, without loss of generality, that |Θ| > 1).
Under Pθ, we have, a.s.,

lim
n→∞

S̃θ
n ≥ (1− ϵ)Sθ

∞ = (1− ϵ) lim
n→∞

Sθ
n, (17)

and under Pθ′ , θ′ ̸= θ, we have, a.s.,

lim inf
n→∞

S̃θ
n ≥ ϵ

|Θ| − 1
lim inf
n→∞

Sθ,θ′

n = ∞. (18)

Combining (17) and (18), we obtain, almost surely under any element of the
statistical model,

lim inf
n→∞

min
θ∈Θ

S̃θ
n = min

θ∈Θ
lim inf
n→∞

S̃θ
n ≥ (1− ϵ)min

θ∈Θ
lim sup
n→∞

Sθ
n.

Now we can discuss in detail the role of the lim inf and lim sup in (13). The
lim inf can be replaced by lim since limn→∞ S̃θ

n exists (and is finite, almost
surely) under Pθ by Doob’s convergence theorem and exists (and is ∞, almost
surely) under Pθ′ for θ′ ̸= θ because of the components Sθ,θ′

n in (16). As for the
lim sup, limn→∞ Sθ

n exists almost surely under Pθ, but there are no constraints
on Sθ

n’s behaviour under Pθ′ for θ′ ̸= θ; therefore, it is essential to have lim sup
(unless we are willing to weaken (13)).

6.3 Creating natural test martingales out of likelihood ra-
tios

So far in this section we were discussing creating natural test martingales out of
other test martingales (those w.r. to a reduced filtration). But the process has
a bottleneck: first we define an e-variable (i.e., a nonnegative random variable
with expectation 1, such as (14)) and then average it w.r. to a filtration (as in
(15)). An easier option is to start directly from an e-variable over the first N
observations, in the case of a finite horizon N .

When testing an online compression model (such as exchangeability), this
model serves as our null hypothesis. We also fix an alternative hypothesis, which,
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in the simplest case, is a probability measure Q on the sample space. (It can be
the mixture of a Bayesian model, as in [27, Sect. 9.2].)

What is really important for us is not Q itself, but a regular conditional
probability generated from Q, which in fact carries less information than Q
does. (See, e.g., [18, Sect. II.89], for a standard theorem about the existence
of a suitable regular conditional probability.) As a replacement for Q in the
context of testing an online compression model with a summary statistic t, we
let q to be a Markov kernel mapping each σ ∈ t(ZN ) to a probability mea-
sure q(σ) on the set t−1

N (σ). To obtain a family of martingales (Sθ) from an
alternative hypothesis, in the case of a finite horizon N , we can proceed as in
Proposition 6.1, namely we set

Sθ
N :=

dq(σN )

dPN (σN )
, Sθ

n := Eθ
(
Sθ
N | Fn

)
, θ ∈ Θ, n = 0, . . . , N − 1, (19)

where PN (σN ) is the probability measure (on t−1
N (σ)) in the corresponding repet-

itive structure. We will see some experimental results for the final value

dq(σN )

dPN (σN )
(20)

(which we call the batch benchmark) of these test martingales in the next section.
In the case of an infinite horizon and in the spirit of Proposition 6.2, we have

an open problem. Consider the sequence of the summaries σ1, σ2, . . . generated
from the alternative hypothesis Q. For each of them (and for each value of
θ) define the likelihood ratio martingale (19). Under what conditions do these
test martingales converge? And if they do, can the limit be used for hypothesis
testing?

7 Illustration: the problem of change detection

In this section I will illustrate several points raised in the previous sections using
a simple setting of changepoint detection with a finite horizon. Chapter 9 of [27]
shows numerous examples where conformal testing (usually implemented as the
Bayes–Kelly, or BK, conformal test martingale) is very close to natural bench-
marks. In the setting of this section the difference is deliberately made more
pronounced. Namely, the observation space is Z := {0, 1}, the null hypothesis
is the randomness model (B20

θ | θ ∈ [0, 1]), Bθ being the Bernoulli distribu-
tion on {0, 1} with parameter θ (which is the probability of 1, Bθ({1}) = θ),
the alternative hypothesis Q is that N0 := 10 observations are generated from
the Bernoulli distribution Bπ0 = B0.1 with parameter π0 := 0.1, and another
N1 := 10 observations are generated from the Bernoulli distribution Bπ1 = B0.9

with parameter π1 := 0.9. (Notice that both π0 and π1 are probabilities of 1,
pre-change and post-change.) All 20 observations are generated independently.
In this setting the time horizon is finite and very short, N := 20.
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We will only be interested in the final values of our martingales and related
processes; for some of these processes the intermediate values are easily com-
putable, but for others this is tricky (and requires further research). The final
values are shown in Fig. 1, which will be explained in the rest of this section.

The boxplots in Fig. 1 represent results of 103 independent simulations of
the final values (at time horizon 20) of five processes, including the Bayes–Kelly
martingale (BK). Each boxplot shows the median as the horizontal orange line
in the middle of a box, with notches representing a confidence interval around
the median, the mean as a green triangle, the interquartile range as a box, and
the 5% and 95% quantiles as whiskers.

The second process, “mean BK”, is an approximation to the expectation (cf.
(12)) of the BK test martingale Sn. To compute its final value, we compute the
final values of 103 independent simulations of the BK test martingale and then
average them. If we average Sn for each n = 0, . . . , N , the resulting process will
no longer be a martingale, as discussed in [27, Sect. 9.3]. However, the final
value will have expected value 1 under the null hypothesis (and so will be a
valid measure of evidence collected against the null hypothesis).

The last two processes in Fig. 1 are the lower benchmark (LB) and the upper
benchmark (UB). The former is

LBn := inf
θ

Q(Z1 = z1, . . . , Zn = zn)

Bθ({z1}) . . .Bθ({zn})
,

where z1, . . . , zn are the realized values of the random observations Z1, . . . , Zn,
respectively, and the latter is

UBn :=
Q(Z1 = z1, . . . , Zn = zn)

B0.5({z1}) . . .B0.5({zn})
.

The lower benchmark is not a martingale under anyB20
θ , but it is a valid measure

of evidence against the null since for each θ it is dominated by the likelihood

BK mean BK batch LB UB

102.6

102.8

103.0

103.2

103.4

BK mean BK batch LB UB

101

102

103

104

105

Figure 1: Left panel: Five final values as described in text for a fixed dataset (for
a changepoint detection problem). Right panel: Five final values as described
in text for random datasets.
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ratio Q(Z1 = z1, . . . , Zn = zn)/(Bθ({z1}) . . .Bθ({zn})). On the other hand, the
upper benchmark is only valid under B20

0.5 (which is, in a sense, the mid-point
between the pre-change and post-change distributions), and not valid under the
other elements of the null hypothesis.

The middle process, the one labelled “batch”, is a new benchmark (which
we called the “batch benchmark” earlier), and we will discuss it at the end of
this section.

The left panel of Fig. 1 shows the final values of the BK martingale, mean BK
martingale, batch benchmark, and upper and lower benchmarks for a specific
randomly generated dataset (using our default seed 42 for the random number
generator). With a large probability, the number of 1s in the dataset will be 10,
in which case the upper and lower benchmarks will in fact coincide, as they do
in Fig. 1.

The final value of the mean BK martingale is higher than that of the BK
martingale in the left panel of Fig. 1, and it is less volatile. It is higher because
averaging on the log scale is akin to taking maximum, as we pointed out in
[27, Sect. 9.3]. It is clear that the genuine average (expectation) of the BK
martingale over the random numbers τ is even higher (with zero volatility), but
it is only marginally higher (as our other experiments show).

If the dataset is randomized, the difference is much less noticeable: see the
right panel of Fig. 1. In particular, the difference between BK and mean BK is
swamped by the variability due to the random choice of a dataset. The three
benchmarks, however, are still significantly higher in mean and median.

Now let us spell out the batch benchmark (20), shown in the middle boxplots
of both panels of Fig. 1, for this case. Suppose the observed data sequence is
z1, . . . , zN and let

K :=

N∑
n=1

zn, k0 :=

N0∑
n=1

zn, k1 :=

N∑
n=N0+1

zn

be the numbers of 1s among all observations, among the pre-change observa-
tions, and among the post-change observations, respectively. The probability of
z1, . . . , zN under the alternative is

πk0
0 (1− π0)

N0−k0πk1
1 (1− π1)

N1−k1

and the number of data sequences leading to the same k0 and k1 is(
N0

k0

)(
N1

k1

)
.

The exchangeability summary (i.e., the summary under the exchangeability
compression model) of z1, . . . , zN is K, and so the conditional probability of
z1, . . . , zN given its exchangeability summary under the alternative hypothesis
is
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πk0
0 (1− π0)

N0−k0πk1
1 (1− π1)

N1−k1∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

)
πK−k
0 (1− π0)N0−K+kπk

1 (1− π1)N1−k

=
1∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

) ( (1−π0)π1

π0(1−π1)

)k−k1
.

In this formula, k is the analogue of k1 for the generic element of t−1
N (σN ) (where

tN and σN refer to the exchangeability model), and K−k is the analogue of k0.
It is clear that k ranges from (K −N0)

+ (where u+ := max(u, 0)) and K ∧N1

(where u∧v := min(u, v)); it is easy to check directly that (K−N0)
+ ≤ K∧N1.

The conditional probability of z1, . . . , zN given its exchangeability summary
under the null hypothesis is

1/

(
N

K

)
,

which gives the explicit expression (
N
K

)
∑K∧N1

k=(K−N0)+

(
N0

K−k

)(
N1

k

) ( (1−π0)π1

π0(1−π1)

)k−k1

for the batch benchmark (20) that we use in our experiments.
The right panel of Fig. 1 shows that the batch benchmark is competitive with

the lower and upper benchmarks. It looks a promising option. Its advantage
over the upper benchmark is obvious: it is valid under any power probability
measure, not just under BN

0.5. One advantage over the lower benchmark is that
it is admissible for each parameter value θ, whereas the inadmissibility of the
lower benchmark for some θ is obvious.

8 Conclusion

I have mentioned several directions of further research in the previous sections,
but these are a few more:

� In Sect. 5.2 we saw that for the model (N∞
µ,1) the element-wise tests are

not fully adequate. It would be interesting to quantify this observation
and to extend it to other online compression models.

� In the examples of Sect. 5 we used the fact (see (10)) that the reduced
σ-algebras F ′

2 coincide for the pivotal and online compression methods in
the case of the Gaussian model with variance 1. It can be shown that
the other non-trivial reduced σ-algebras F ′

n, n > 2, also coincide for that
model. In general, however, the two methods may involve very different
degrees of forgetting, which would be interesting to formalize and quantify
for different models.
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� Can we apply Proposition 6.1 and (12) (or their elaborations) to get ex-
plicit expressions for the natural modifications (i.e., modifications that are
test martingales w.r. to the natural filtration) of the numerous conformal
test martingales described in [27, Part III]?

� Relaxing the assumptions of Proposition 6.2 (such as Θ being finite) or
showing that it is impossible.

� In Sect. 7 we only studied the final values of various test martingales.
Their intermediate values deserve to be studied both theoretically and
experimentally.

A characteristic feature of conformal testing is that part of the data is for-
gotten in the process of gambling against the null hypothesis (such as exchange-
ability). On the other hand, the same test martingale works against every
probability measure in the null hypothesis. We have seen that forgetting is
essential, even if our gambling strategy is allowed to depend on a probability
measure in the null hypothesis.

We have also seen that we can get rid of forgetting, but to a very limited
extent. It is not clear at all how the power and versatility of conformal testing
can be achieved without forgetting, and it appears that, at least for the time
being, we should embrace the need for forgetting and live with it.
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