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Abstract

A very simple example demonstrates that Fisher’s application of the condition-
ality principle to regression (“fixed x regression”), endorsed by Sprott and many
other followers, makes prediction impossible in the context of statistical learning
theory. On the other hand, relaxing the requirement of conditionality makes it
possible via, e.g., conformal prediction.
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1 Introduction

The main goal of this note is to draw the reader’s attention to the fact that
the conditionality principle is not compatible with statistical learning theory, in
which the task is to predict the label y of an object x. Two characteristic features
of statistical learning theory are that the labelled objects (x, y) are only assumed
to be independent and identically distributed (the unrestricted assumption of
randomness) and that the objects x are complex (such as videos), so that we
are unlikely to ever see identical objects. These two features make prediction
impossible if we want to condition on the observed xs as recommended by Fisher.
This is not a new observation, but it might not be as widely known as it deserves.

2 Assumption of randomness and conformal
prediction

In statistical learning theory (see, e.g., [17, 16]) we consider observations (x, y)
each consisting of two components: an object x ∈ X and its label y ∈ Y. In
general, the object space X and label space Y are arbitrary measurable spaces,
but to discuss the relevance to Fisher’s ideas it will often be convenient to
concentrate on the case of regression Y = R.

The simplest setting is where we are given a training sequence

(x1, y1), . . . , (xn, yn)

and the problem is to predict the label yn+1 of a test object xn+1.
The (unrestricted) assumption of randomness is that the observations
(x1, y1), . . . , (xn+1, yn+1) are generated independently from an unknown prob-
ability measure on X × Y. This assumption is standard in machine learning
and popular in nonparametric statistics.

One way to make predictions with validity guarantees under unconstrained
randomness is conformal prediction [18]: given a target probability of error ϵ > 0
conformal prediction produces a prediction set Γ ⊆ Y such that yn+1 ∈ Γ with
probability at least 1−ϵ. The basic idea of conformal prediction is familiar (see,
e.g., [6, Sect. 7.5]): we fix a statistical test of the null hypothesis of randomness,
go over all possible labels y for the test object xn+1, and include in Γ all labels
y for which the augmented training set (x1, y1), . . . , (xn, yn), (xn+1, y) does not
lead to the rejection of the null hypothesis. In many interesting cases this idea
has computationally efficient implementations (see, e.g., [18, Sects 2.3 and 2.4]
and [12]).

3 A simple conditionality principle and example

In this section we will only need a special case of the conditionality principle,
which I will call the “fixed x principle” following Aldrich [1]. The fixed x
principle says that in regression problems (or any other prediction problems
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of the kind described in the previous section) we should consider the observed
sequence of objects x1, . . . , xn+1 as fixed, even if they were in fact generated
from some probability distribution (known or unknown).

Fisher was a life-long promoter of both the general conditionality principle
(which was introduced formally only in 1962 by Birnbaum [5]) and the fixed
x principle as its special case. When H. Fairfield Smith asked Fisher about
the origin of the fixed x principle (treating “the independent variable as fixed
even although it might have been observed as a random sample of some variate
population”) in his letter of 6 August 1954 [4, pp. 213–214], Fisher responded
with a reference to his 1922 paper [7, p. 599].

See Aldrich [1] about the development of Fisher’s fixed x regression. Aldrich
quotes Fisher [8, Sect. 2, p. 71] (in the context of regression with y having a
Gaussian distribution given x): “The qualitative data may also tell us how x is
distributed, with or without specific parameters; this information is irrelevant.”

David Sprott, a prominent follower of Fisher’s, also promoted the condition-
ality principle in his work. In his 1989 interview with Mary Thompson [15],
he remembers a case when, as a student, he was tempted to take into account
the variation in the xs in a practical regression problem. His statistics professor
said, “No, you wouldn’t do that, you’d condition on the xs”. Sprott couldn’t
find out why conditioning on the xs was the right thing to do until he went to
London a few years later to work with Fisher, but then he was fully convinced
by Fisher.

The intuition behind the fixed x principle is that only the observed objects
are relevant for predicting the label of xn+1. In Sect. 5 we will discuss this in a
wider context. And in this section, we discuss the paralysing effect of the fixed
x principle under unrestricted randomness using the following example.

Example 3.1. Consider the problem of regression with X = Y = R, and
suppose:

� the training sequence is such that yi = xi for all i = 1, . . . , n, for a large n;

� x1, . . . , xn+1 are all different.

What can we say about yn+1 knowing xn+1?

Example 3.1 may describe a situation where the observations are indepen-
dent and coming from the same continuous distribution. Under the assumption
of randomness, we can confidently claim that yn+1 = xn+1; otherwise, the last
observation looks strange and leads to a p-value of 1/(n+1) for a fixed statistical
test. As the test statistic T for such a test we can take, e.g.,

T :=

{
1 if |yn − xn| > |yi − xi| for all i = 1, . . . , n− 1

0 otherwise.

For any ϵ > 1/(n+ 1), we have [xn+1, xn+1] as the prediction interval for yn+1

at confidence level 1 − ϵ. Intuitively, this follows from the expectation that
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the future will be similar to the past (Laplace’s rule of succession). Conformal
prediction extends this idea greatly.

However, we can say nothing whatsoever about yn+1 if we condition on the
observed x1, . . . , xn+1. The problem with conditioning on x is that it destroys
the assumption of randomness. The assumption of randomness becomes the
following assumption of conditional randomness: the data-generating distribu-
tion P is determined by an arbitrary sequence (x1, . . . , xn+1) ∈ Xn+1 and an
arbitrary family of probability measures {Qx | x ∈ X} on Y (measurable in the
sense of being a Markov kernel with X as source and Y as target); we then have
P = (δx1

×Qx1
)× · · · × (δxn+1

×Qxn+1
), where δx is the distribution on X that

is concentrated at x. When x1, . . . , xn+1 are all different, the true conditional
distribution of yn+1 can be any probability measure on Y.

4 More advanced results

In this section I will briefly describe several results that shed light on the phe-
nomenon illustrated by Example 3.1. Lei and Wasserman [13, Lemma 1] show
that efficient set prediction under unrestricted randomness is impossible even
if we only condition on the test object xn+1, provided it is not an atom of the
data-generating distribution.

Barber et al. [2] show that non-trivial set prediction becomes possible when
we condition on xn+1 ∈ X for sets X of probability at least δ for some threshold
δ > 0, but it can always be accomplished as a trivial corollary of unconditional
prediction procedures such as conformal prediction.

Despite these negative results, designing conformal predictors that are con-
ditional in a weaker sense is an active area of research, starting from a basic idea
of Mondrian conformal prediction [18, Sect. 4.6]. Asymptotically, conditional
conformal prediction is possible in a very strong sense [13, Theorem 1]. Finite-
sample results are mathematically less satisfying but may hold great promise in
practice; see, e.g., [14, 3, 9, 10].

5 General conditionality principle and its diffi-
culties

Cox and Hinkley [6, Sect. 2.3(iii)] point out two versions of the conditionality
principle, basic and extended. In the basic version, we are given an ancillary
statistic C, i.e., a random variable with a known distribution, and the condi-
tionality principle says that our analysis should be conditional on the observed
value of C. This prescription is very compelling in some cases, such as Cox’s
famous example of choosing one of two measuring instruments at random and
then observing its reading (knowing which instrument has been chosen); see [6,
Example 2.33].

The basic version does not imply the fixed x principle, since the distribution
of the xs does depend on the unknown data-generating distribution. In the
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extended conditionality principle, the unknown parameter is split into two parts,
and only one of those parts is of direct interest to us. In the context of the
assumption of randomness, the parameter is the data-generating distribution
P := Rn+1, where R is the probability measure on X × Y generating one
observation. Split R into the marginal distribution RX onX and the conditional
distribution Qx of y given x, for each x ∈ X; Q is a Markov kernel. This splits
P into the marginal distribution Rn+1

X on Xn+1 and the family

Q := {Qx1
× · · · ×Qxn+1

| (x1, . . . , xn+1) ∈ Xn+1};

only Q is of interest to us in our prediction problem. Then C := (x1, . . . , xn+1)
is ancillary for Q in the following extended sense:

� The distribution of C does not depend on Q (and only depends on Rn+1
X ).

� The conditional distribution of the remaining part of the data y1, . . . , yn+1

given the value of C depends only on Q (and does not depend on Rn+1
X ).

The extended conditionality principle, requiring analysis to be conditional on C,
becomes the fixed x principle when adapted to the assumption of randomness.

Lehmann and Scholz [11, Sect. 1] point out that conditional inference can be
less efficient for small samples, although the difference tends to disappear as the
sample size increases. However, Example 3.1 is more serious, since it demon-
strates a complete failure of the conditionality principle. Another instance of a
comparable complete failure of this principle is where the experimental design
involves deliberate randomization, as in a random assignment of subjects to
treatments in randomized clinical trials [11, end of Sect. 3]. The conditionality
principle then forces us to disregard randomization disabling the most standard
and powerful statistical tools in medicine.

6 Conclusion

This note observes that the extended conditionality principle prevents successful
prediction in statistical learning theory, which is the basic setting of machine
learning. (Other varieties of machine learning usually make prediction even more
difficult; e.g., they may allow different distributions for the training and test
observations.) A natural way out is to relax the conditionality principle, making
approximate conditionality one of the desiderata for prediction algorithms (see,
e.g., [18, Sect. 1.4.4]).
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