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Abstract
This paper argues for a wider use of the functional theory of randomness, a
modification of the algorithmic theory of randomness getting rid of unspecified
additive constants. Both theories are useful for understanding relations between
the assumptions of IID data and data exchangeability. While the assumption
of IID data is standard in machine learning, conformal prediction relies on the
weaker assumption of data exchangeability. Nouretdinov, V’yugin, and Gam-
merman showed, using the language of the algorithmic theory of randomness,
that conformal prediction is a universal method under the assumption of IID
data. In this paper, prepared for the Alex Gammerman Festschrift, I will se-
lectively review connections between exchangeability and the property of being
IID, early history of conformal prediction, my encounters and collaboration with
Alex and other interesting people, and a translation of Nouretdinov et al.’s re-
sults into the language of the functional theory of randomness, which moves it
closer to practice. Namely, the translation says that every confidence predictor
that is valid for IID data can be converted into a conformal predictor without
losing much in predictive efficiency.
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1 Introduction
The functional theory of randomness was proposed in [50] under the name of
non-algorithmic theory of randomness. The algorithmic theory of randomness
originated with Kolmogorov in the 1960s [25] and has been extensively developed
in numerous papers and books (see, e.g., [38]). It has been a powerful source
of intuition, but its weakness is the dependence on the choice of a specific
universal partial computable function. This dependence leads to the presence
of unspecified additive (sometimes multiplicative) constants in its mathematical
results. Kolmogorov [24, Sect. 3] speculated that for natural universal partial
computable functions the additive constants will be in hundreds rather than
in tens of thousands of bits, but this accuracy is very far from being sufficient
in machine-learning and statistical applications (an additive constant of 100
in the definition of Kolmogorov complexity translates into the astronomical
multiplicative constant of 2100 in the corresponding p-value).

The way of dealing with unspecified constants proposed in [50] is to express
statements of the algorithmic theory of randomness as relations between various
function classes. It will be introduced in Sect. 6. In this paper we call this
approach the functional theory of randomness. While it loses somewhat in
intuitive simplicity, it is closer to practical machine learning and statistics.

The main message of this paper is that the functional theory of randomness
can be useful in the foundations of machine learning in general and conformal
prediction in particular. The most standard assumption in machine learning
is that the data are generated in the IID manner (are independent and iden-
tically distributed). An a priori weaker assumption is that of exchangeability,
although for infinite data sequences being generated in the IID manner and ex-
changeability turn out to be essentially equivalent by the celebrated de Finetti
representation theorem. The classical work on relations between the two as-
sumptions, being IID and being exchangeable, will be the topic of Sect. 2.

The word “random” is often used in two very different senses: in the sense
of statistical randomness referring to IID data (as in the title of [56]) and in
the sense of algorithmic randomness (as in the title of [38]). In this paper I
will try not to use “random” and its derivative “randomness” often, apart from
expressions such as “algorithmic theory of randomness” and “functional theory of
randomness”. For the former sense, I will usually replace derivatives of “random”
by compounds containing “IID”, such as the IID assumption for the assumption
that the data are generated in the IID manner (so that simply replacing “IID”
by “independent identically distributed” becomes impossible, as in [57]). For the
latter sense, I will often use the word “typical” and its derivative “typicalness”,
which was endorsed by Kolmogorov [38, Appendix 2, footnote 1] in its Russian
form типичность and used in [27] (written by Uspensky [27, Introduction]).

Sections 3 and 4 contain personal elements. In Sect. 3 I recount meeting
Andrei Kolmogorov and working under his supervision on the relation between
IID and exchangeability. In Kolmogorov’s frequentist philosophy of probability,
the IID property was at the very basis of the notion of probability. In Sect. 4 I
recount meeting Alex and then Vladimir Vapnik a decade later. Vapnik was a
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second person who impressed me with his wholehearted acceptance of the IID
assumption, which quickly led to the development of conformal prediction.

In my work under Kolmogorov, I realized that for finite data sequences the
difference between IID and exchangeability is important. However, conformal
prediction uses only exchangeability. This raises the question whether it is pos-
sible to improve on conformal prediction by using the stronger IID assumption.
The topic of Sect. 5 is the fundamental result by Nouretdinov, V’yugin, and
Gammerman saying that only limited improvement is possible. The result is
stated in terms of the algorithmic theory of randomness, making it very intu-
itive, though the intuition can sometimes be obscured by dense notation.

Despite Nouretdinov et al.’s result being fundamental, it inherits the con-
ceptual weakness of the algorithmic theory of randomness discussed earlier. As
it involves unspecified constants, it cannot, strictly speaking, have any practical
implications. In Sect. 6 I will state this and several related results in terms of
the functional theory of randomness.

In this paper italic e may stand for an e-value. Euler’s number (the base of
the natural logarithms) is roman e ≈ 2.72. The notation for binary logarithm
is lb [9, Sect. 10.1.2]. No detailed knowledge of the algorithmic theory of ran-
domness is assumed on the part of the reader, but knowing the basics would be
useful.

2 IID and exchangeability
Modelling data as IID observations is an ancient notion. Already Jacob
Bernoulli [7] was using the IID assumption to state his weak law of large num-
bers. As Glenn Shafer reminds us in [18, Shafer’s comment], the IID case has
been central to probability and statistics ever since, “but its inadequacy was al-
ways obvious, and Leibniz made the point in his letters to Bernoulli: the world
is in constant flux; causes do not remain constant, and so probabilities do not
remain constant”. There is no doubt the IID assumption is highly restrictive.

The real question is whether the IID assumption is a good starting point. It
can be fundamental without being all-encompassing; many other, perhaps much
more realistic, scenarios may reduce in some way to the IID case. For example,
when dealing with prediction or decision making, is it a good strategy first to
explore in detail what can be achieved under the IID assumption and then to
try and relax it? Or is the assumption so restrictive that it is best to start
elsewhere? My views about this have been drifting over time, and even now I
remain uncertain.

One relatively modest extension of the IID assumption is the assumption
of exchangeability; for potentially infinite data sequences one may even argue
that it is not an extension at all. Philip Dawid says in [60, Sect. 7], “For so
long, and it’s still true of 97% of everything done in statistics and machine
learning and everything, the fundamental assumption is basically we have just
a bag of exchangeable goodies. And I thought that was just so limiting; how
boring. There’s a big wide world beyond that.” This has been my feeling as well
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since I started thinking about such things (and among my colleagues, Shafer’s
and Dawid’s views on the philosophy of probability are perhaps closest to mine).
However, I have also been impressed by the power of algorithms developed under
IID and exchangeability and by many ingenuous ways of greatly relaxing these
assumptions.

It is not clear who introduced exchangeability (see [11] for the complicated
history), but the most well-known theorem about exchangeability is de Finetti’s
(generalized in later papers by other people), which connects it with IID. Let
Z be an observation space (formally, a measurable space), and suppose that
we observe its elements zi ∈ Z, i = 1, 2, . . . , sequentially. The IID assumption
is that the observations zi are generated from an IID probability measure Q∞,
Q being a probability measure on Z. The assumption of exchangeability is
that they are generated from an exchangeable probability measure on Z∞, i.e.,
a probability measure that is invariant w.r. to permutations of finitely many
observations.
Remark 1. In [56] we referred to probability measures of the form Qn, with
n = ∞ allowed, as “power probability measures”. In this paper I am using
the expression “IID probability measures” instead to simplify terminology. Ex-
changeability of a probability measure on Zn for n < ∞ still means invariance
w.r. to permutations of observations.

According to de Finetti’s theorem (see, e.g., [33, Theorem 1.49]), for infinite
sequences, the IID and exchangeability assumptions are equivalent. Namely,
each exchangeable probability measure R on Z∞ is a convex mixture of IID
probability measures: there exists a probability measure µ on the family P(Z)
of all probability measures on Z such that

R =

∫
P(Z)

Q∞ µ(dQ).

The theorem makes the weak assumption that Z is a standard Borel space
(and then P(Z) is equipped with the smallest σ-algebra making all evaluation
functionals measurable).

I find it intuitively compelling that the assumption that the data are gener-
ated from a statistical model M (i.e., a family probability measures) is equivalent
to the assumption that the data are generated from the convex hull M̄ of that
statistical model. However, there are people who do not share this intuition
(e.g., a friendly reviewer for [58]), so let me try to make it more explicit. The
most basic way of testing a statistical model M (“Cournot’s principle”) is to
select in advance a critical region A of a small probability under any probability
measure in M and reject M if the actual data happens to be in A. Since

sup
R∈M

R(A) = sup
R∈M̄

R(A),

rejecting M and rejecting M̄ are equivalent. This conclusion is not affected if
Cournot’s principle is replaced by more sophisticated ways of hypothesis testing,
such as using p-variables or e-variables, to be discussed starting from the next
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section. In particular, the IID and exchangeability assumptions are equivalent.
This is far from being true for finite sequences, as will be discussed in detail in
Sections 3–4.

The IID picture is fundamental in the frequentist theory of probability and
statistics, at least as it was presented and developed by Richard von Mises
[43,44] and Andrei Kolmogorov [21, Sect. I.2], who was following von Mises. It
is well known that Kolmogorov was the first to put the mathematical theory of
probability on a firm axiomatic basis in his 1933 book [21]. However, while the
axioms of probability introduced in this book eventually (albeit slowly) gained
universal acceptance (see, e.g., [36]), the way in which Kolmogorov proposed
to connect his axioms with reality [21, Sect. I.2] was informal and has never
become widely accepted. According to Kolmogorov’s frequentist Principle A,
introduced in [21, Sect. I.2], we can say that an event A has a probability P(A)
under a system of conditions S if

One can be practically certain that if the system of conditions S
is repeated a large number of times, n, and the event A occurs m
times, then the ratio m/n will differ only slightly from P(A).

(When quoting [21, Sect. I.2] I am using the translation given in [36, Sect. 5.2.1].)
This principle, which Kolmogorov traces back to von Mises [21, Sect. I.2, foot-
note 1], gives us a way of measuring P(A). Presumably the repetitions in Prin-
ciple A are independent, and so IID observations are at the heart of frequentist
probability.
Remark 2. Kolmogorov’s approach was not purely frequentist. Alongside his fre-
quentist Principle A he also had a non-frequentist Principle B, namely Cournot’s
principle:

If P(A) is very small, then one can be practically certain that the
event A will not occur on a single realization of the conditions S.

Kolmogorov [21, Sect. I.2] postulated both principles, but it can be argued that
Principle B renders Principle A redundant [36, Sect. 5.2]. All the books that I
have co-authored so far can be traced back either to Kolmogorov’s Principle A
[56] or to his Principle B [35,37].

For many years after the publication of his book [21], Kolmogorov talked
about connections of his axioms with reality only informally, believing that
von Mises’s approach, which was based on a flawed definition of an individual
infinite sequence of IID observations, could not be cleanly applied to the real
world. (See, e.g., [22].) A breakthrough came when Kolmogorov visited India in
1962 [23]. He realized that von Mises’s picture can be made applicable to finite
sequences (albeit in a way that looks awkward to me, no doubt in hindsight, in
view of his later elegant algorithmic approach, which was much more typical of
Kolmogorov).

Soon afterwards Kolmogorov came up with his algorithmic theory of ran-
domness subsuming his theory developed in India. In particular, he formalized
what it means for a finite binary sequence to be a typical IID sequence. Since
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Kolmogorov was only dealing with binary sequences, he referred to typical IID
sequences as “Bernoulli sequences”. The key to his definition was a notion of
algorithmic complexity (“Kolmogorov complexity”), and typicalness was defined
as maximal complexity in a finite set. This theory was described in his papers
[24–26].

Martin-Löf [28] translated Kolmogorov’s definition of typicalness into a more
standard statistical language defining universal p-values. Later Levin and Gács
modified Martin-Löf’s definition in an important way, which I will discuss in
the next section.

3 Meeting Kolmogorov; IID vs exchangeability
for finite sequences

In 1980 Kolmogorov became Head of the Department of Mathematical Logic
at Moscow University, and in the same year I became his student. This hap-
pened after I attended his talk aimed at undergraduate students and afterwards
spoke to Alexei Semenov, who in his role of the departmental scientific secretary
(учёный секретарь кафедры) took care of the administrative side. First I did
the specialized part of a Soviet combined BSc/MSc degree programme under
Kolmogorov’s supervision (the specialized part covering the last three years of
the 5-year degree programme), and then I did a PhD under the joint supervision
of Kolmogorov and Semenov.

One of the problems that Kolmogorov offered to me was to quantify the
qualitative (and intuitively obvious) statement that Bernoulli sequences satisfy
his frequentist definition as given in [23]. This was a difficult problem that
did not look particularly appealing to me (some results in this direction were
obtained later by Kolmogorov himself and his other student Eugene Asarin;
see [5, Theorem 3] for Kolmogorov’s result and [4, Theorem 1] for Asarin’s).
Instead, I chose to investigate the relation between IID and exchangeability for
finite sequences.

As I mentioned in the previous section, Kolmogorov was only interested in
finite sequences in his work on the foundations of probability and believed that
infinite sequences, being empirically non-existent, are irrelevant when discussing
connections between the mathematical theory of probability and reality. At one
point during a walk to a train station Kolmogorov told me that we can only
see finite sequences around us, but in the quote from Kolmogorov given in
[2, Chap. 7, bottom of p. 57] the word “only” is misplaced (Kolmogorov could
not see any infinite sequences, and neither could I).

In my first journal paper [45] I explored Kolmogorov’s definition of Bernoulli
sequences and argued that it was a formalization of a different kind of typical-
ness, not typicalness under IID. The term that I used, on Alexander Zvonkin’s
advice, for Kolmogorov’s Bernoulli sequences was von Mises’s “collectives”, but
in hindsight I meant exchangeability (and I talk about exchangeability in the
technical report [45] containing the proofs). After that I introduced a definition
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of typicalness under IID for binary sequences and characterized the difference
between the two definitions. To state these results, let me give the relevant
(standard) definitions.

I will use the notion of an aggregate of constructive objects, as in [41,
Sect. 1.0.6]. This is an infinitely countable set whose elements can be effec-
tively numbered, such as the set Z of all integer numbers or the set {0, 1}∗ of
all finite binary sequences. Let the observation space Z range over the finite
non-empty subsets of a fixed aggregate of constructive objects. In Kolmogorov’s
work in this area and in my work reported in this section, Z = {0, 1}, but let
me give more general definitions for later use (e.g., in the context of conformal
prediction). Let N be the set of natural numbers; by default we do not include
0 in N, so that N = {1, 2, . . . }.

A real-valued function f defined on an aggregate of constructive objects
is lower semicomputable if there is an algorithm that, when fed with v in the
domain of f and r ∈ Q (Q being the set of rational numbers), eventually stops if
and only if f(v) > r. Similarly, it is upper semicomputable if this condition holds
with f(v) > r replaced by f(v) < r. (And computability is the conjunction of
lower and upper semicomputability.)

Let me start from a definition equivalent to Kolmogorov’s, which is closest to
conformal prediction. A p-test for exchangeability is a [0, 1]-valued upper semi-
computable function P that takes as input Z, N ∈ N, and a sequence z1, . . . , zN
in ZN and that satisfies, for all Z, all N , and all exchangeable probability mea-
sures R on ZN ,

∀ϵ ∈ (0, 1) : R({ζ : P (ζ) ≤ ϵ}) ≤ ϵ (1)

(omitting, here and later, mentioning Z and N as arguments; remember that Z
always ranges over the finite subsets of a fixed aggregate of constructive objects).
The requirement (1) is usually expressed by saying that P , for fixed Z and N ,
is a p-variable (and its values are p-values). There exists a smallest, to within a
constant factor, p-test for exchangeability, which is then called universal. Let us
fix a universal p-test for exchangeability and let DpX stand for its minus binary
logarithm. We call DpX(z1, . . . , zN ) the exchangeability p-deficiency of the se-
quence (z1, . . . , zN ). We can also allow P to depend on a condition (an integer
number) (and then P is required to be lower semicomputable as function of all
its arguments, including the condition); the full notation for the exchangeability
p-deficiency is then DpX(z1, . . . , zN | k), where k is the condition.

The function DpX can be defined to some degree arbitrarily; different choices
of DpX, however, will coincide to within an additive constant. This renders re-
sults of the algorithmic theory of randomness inapplicable in practice. When we
say that two functions (such as DpX) that are only defined to within an additive
constant coincide, we mean, of course, that their difference is bounded. In gen-
eral, when discussing relations (such as inequalities) between such functions, we
will always ignore additive constants. Without loss of generality, we will assume
that the function DpX, and similar functions introduced later in this paper, are
integer-valued.

In the case Z = {0, 1}, DpX(z1, . . . , zN ) coincides with Kolmogorov’s def-
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DpX

DeX DeR

DpR

Figure 1: Connections between 4 deficiencies of typicalness: The connection
between DpX and DpR (shown as thick black line) is established via the chain
DpX–DeX–DeR–DpR (shown as thin red lines).

inition of Bernoulliness, as follows from [53, Proposition 11]. Kolmogorov’s
expression for “DpX(z1, . . . , zN ) ≤ m” was “z1, . . . , zN is m-Bernoulli” (“m-
бернуллиевская”).

In a similar way, we can define the IID p-deficiency DpR(z1, . . . , zN ) of a
sequence (z1, . . . , zN ). The only difference is that we replace p-tests for ex-
changeability by p-tests for IID defined by letting R in the definition (1) range
over the IID probability measures QN , Q being a probability measure on Z gen-
erating one observation. A universal p-test for IID also exists; we let DpR stands
for its minus binary logarithm and call DpR(z1, . . . , zN ) the IID p-deficiency of
z1, . . . , zN . This is equivalent to my definition proposed in [45].

To establish connections between DpX and DpR, I followed a strategy that is
standard in the algorithmic theory of randomness. While hypothesis testing in
classical statistics is based on p-values, e-values are mathematically much more
convenient and often serve as a useful tool. Universal e-values were introduced
in the algorithmic theory of randomness by Levin and then simplified by Gács
[15] (see also [61]), without using this expression, and nowadays non-universal
e-values are gaining popularity in statistics (see, e.g., [20,31,62]). Therefore, the
Martin-Löf-style functions DpX and DpR were connected in [45] by connecting
DpX and DeX, then DeX and DeR, and finally DeR and DpR, where DeX and
DeR are Levin-style analogues of DpX and DpR, to be defined momentarily.
(The connections are shown in Fig. 1.)

An e-test for exchangeability is a nonnegative lower semicomputable function
E on the same domain as a p-test for exchangeability, but it is required to satisfy∑

ζ∈ZN

E(ζ)R({ζ}) ≤ 1 (2)

in place of (1) for all Z, N , and exchangeable R. Both upper semicomputability
for P (in (1)) and lower semicomputability for E (in (2)) are natural require-
ments: we reject the null hypothesis of exchangeability (or IID) when a p-value
is small (say, below some threshold such as 1% or 5%) or an e-value is large, and
the decision to reject should be taken in finite time. The condition (2) means
that, for fixed Z and N , E is an e-variable, and then its values are e-values. We
fix a universal (this time meaning largest to within a constant factor) e-test for
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exchangeability and call its binary logarithm DeX exchangeability e-deficiency.
Replacing exchangeable R by R := QN , we get the definition of DeR, IID e-
deficiency.

For any data sequence z1, . . . , zN , let us define the IID e-deficiency of the cor-
responding configuration *z1, . . . , zN+, i.e., of the bag (multiset) of its elements,
as

DeR(*z1, . . . , zN+) := min
π

DeR(zπ(1), . . . , zπ(N)), (3)

π ranging over all permutations of {1, . . . , N}. In other words, a bag is IID
(compatible with the IID assumption) if it can arise from an IID data sequence.
If ζ is a data sequence, we let *ζ+ stand for the bag of its elements.

The following relation between IID and exchangeability is stated in [45,
Theorem 1] for Z = {0, 1} and in [55, Theorem 3] in general. It uses “=+”
to mean coincidence of two functions to within an additive constant; Z+ is
the family of all non-empty finite sequences of observations. Remember that
Z varies over the finite non-empty subsets of a fixed aggregate of constructive
objects.

Theorem 1. Let ζ range over Z+ for a variable Z. Then

DeR(ζ) =+ DeR(*ζ+) +DeX(ζ | DeR(*ζ+)). (4)

Theorem 1 clarifies the relation between exchangeability and IID in the case
of finite sequences: a sequence is IID if and only if it is exchangeable and its
configuration is IID. The difference between the deficiencies of IID and exchange-
ability of a data sequence is, roughly, the IID deficiency of its configuration; the
condition “ | DeR(*ζ+” in (4) slightly obscures this, but (4) implies, e.g.,

DeR(*ζ+) +DeX(ζ)≤+ DeR(ζ)≤+ 1.01DeR(*ζ+) +DeX(ζ)

(with “≤+” denoting the inequality to within an additive constant).
Another result that I obtained in [45] (Theorem 2) was about how big the

difference given by (4) between Kolmogorov’s and my definitions can be. In
the binary case considered in that paper, the configuration *ζ+ carries the same
information as the number of 1s in ζ given its length N . Let k be the number
of 1s. Then DeR(k) can be characterized as the typicalness deficiency of k in its
neighbourhood of size

√
k(N − k)/N (approximately

√
N if k is neither very

small nor very large). Informally, this is a requirement of local typicalness; e.g.,
k = ⌊N/2⌋ is untypical for a large N since it is described in such a simple way
(given N , which the definition assumes). This characterization implies that the
difference between DeX and DeR can be as large as 1

2 lbN on data sequences of
length N , but not larger.

In the binary case the difference between IID and exchangeability appears
small, of the order of magnitude O(logN), which is much less than the attainable
upper bound of N + o(N) on DeX and DeR. In the algorithmic theory of
randomness, coincidence to within a logarithmic term is often considered as
being sufficiently close to disregard the difference.
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These statements are also true about the definitions DpX and DpR in terms
of p-values, as these inequalities show:

DeX ≤+ DpX ≤+ DeX +2 lbDeX,

DeR ≤+ DpR ≤+ DeR +2 lbDeR
(5)

(they can be proved in the same way as Proposition 1 in [30]). We can see that
DeX and DpX, as well as DeR and DpR, coincide to within logarithmic terms.
Therefore, DpX and DpR also coincide to within a logarithmic term. This may
be the reason why Kolmogorov used DpX rather than DpR as formalization, in
the binary case, of “a result of independent tests with a probability p of getting
a one during each test” [25, Sect. 2].

Remark 3. In [25, Sect. 2] Kolmogorov says (in translation) about his proposed
definition, “We view, approximately, in this manner ‘Bernoulli sequences’ where
separate signs are ‘independent’ and appear with a certain probability p.” It
is natural to assume, which I did, that the word “approximately” here means
that he is ignoring the O(logN) difference between the two deficiencies (IID
vs exchangeability). However, Kolmogorov told me that this was not what he
meant (and he did not elaborate further).

From the vantage point of conformal prediction, however, the difference of
1
2 lbN between DeX and DeR is not small at all. Before discussing this, let us
check that this difference persists when we move to the p-versions, DpX and
DpR. Indeed, let us consider a data sequence ζ ∈ {0, 1}N which is a typical
element of the set of all binary sequences of length N containing exactly ⌊N/2⌋
1s, for a large N . Then DpX(ζ) will be close to 0, while, by the local limit
theorem [39, Sect. 1.6], DpR(ζ) will be close to 1

2 lbN . Therefore, the difference
between DpX and DpR can also be as large as 1

2 lbN .
An ideal picture of conformal prediction will be introduced in the next sec-

tion, but what is important for us now is that the largest p-deficiency at which
an ideal conformal predictor can reject a false label for a test object is lbN ,
where N is the length of the “augmented training sequence” (for details, see
(10) below). Another manifestation of this phenomenon, which we will call the
“fundamental limitation of conformal prediction”, is the fact that the smallest
possible conformal p-value is 1/N . Now 1

2 lbN does not look small anymore.
Even in the binary case, the difference between DpX and DpR can eat up half
of the largest p-deficiency achievable by an ideal conformal predictor. In the
non-binary case, the difference between IID and exchangeability becomes even
more substantial; see inequality (8) below and its discussion.

The paper [45] did not contain any proofs. Full proofs were first published
only in 2016, but the main components appeared in [48], as indicated in [45,
Appendix C].

Remark 4. There are versions of de Finetti’s theorem for finite sequences that
assert near equivalence between a finite sequence being IID and being a prefix
of a much longer finite sequence that is exchangeable (see, e.g., [13,14] for much
stronger results). This idea of using exchangeable extensions makes it possible
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to adapt de Finetti’s theorem to finite sequences, but in this paper we are only
interested in basic exchangeability, with a fixed length of the data sequence.

4 Meeting Alex Gammerman and Vladimir Vap-
nik; emergence of conformal prediction

I first met Alex in Barcelona at EuroCOLT 1995, the Second European Confer-
ence on Computational Learning Theory (Barcelona, Spain, 13–15 March 1995).
Shortly before that, Norman Gowar, the Principal of Royal Holloway, University
of London, had suggested that Alex become the next Head of Department of
Computer Science. Despite some initial misgivings, Alex agreed. He proposed
establishing a machine-learning group in the department, and the Principal en-
thusiastically supported him. One of Alex’s goals in attending EuroCOLT 1995
was to meet, as new Head of Department, active researchers in machine learning.

It is interesting that the First European Conference on Computational
Learning Theory had been held at Royal Holloway, University of London, on
20–22 December 1993, yet neither Alex nor I attended it (even though Alex had
started teaching at Royal Holloway in September of that year).

Apart from discussing research at EuroCOLT 1995 (in particular, I learned
about Alex’s interest in Kolmogorov complexity), I remember an enjoyable walk
past the Columbus monument at the bottom of La Rambla, Barcelona’s iconic
pedestrian street. My paper presented at the conference (and published in the
proceedings as [47]) elaborated on the key element of the connection between
IID and exchangeability found in [45] (I talked about it at length in the previous
section). Later Paul Vitányi invited me to submit an extended version of [47]
to a Special Issue of the Journal of Computer and System Sciences devoted to
EuroCOLT 1995; the extended journal version appeared as [48] and later led to
the publication of the proofs in [45].

In the summer of 1995 I moved to Stanford to spend a year at the Centre for
Advanced Studies in the Behavioral Sciences (now part of Stanford University
but then an independent institution). It had been difficult to survive doing
science in Russia (I even attended a Business School in Moscow for a year, with
an internship in the USA in the summer of 1992), and when Alex invited me to
apply for a lectureship position at Royal Holloway to join the emerging machine-
learning group (later called CLRC, Computer Learning Research Centre), I saw
it as an exciting opportunity. In December 1995 I had an interview there, and at
the same time my friend Philip Dawid arranged a backup interview at UCL in
case I was unsuccessful. As it turned out, I was successful at Royal Holloway—
and I have no idea how I fared at UCL. Even though I was appointed as lecturer,
Alex told me that I would be promoted to Professorship within three years—and
indeed, I was.

Alex’s first two hires were Vladimir Vapnik (part-time) and, shortly after-
wards, me. My family and I moved permanently to the UK in June 1996. That
summer, Alex, Vapnik, and I had very fruitful discussions which later led, among
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other things, to the development of conformal prediction. Vapnik was working
(mainly or even exclusively) on support vector machines and writing his 1998
book [42], we discussed them repeatedly, and I was eager to contribute.

Before meeting Vapnik, I had not taken the IID assumption particularly
seriously. My philosophy was affected by my work on what Shafer and I later
called “game-theoretic probability” ([12, 46], with later books [35, 37] joint with
Shafer), and as I mentioned earlier, this assumption appeared narrow to me.
But Vapnik was taking it very seriously and in many cases did not even men-
tion explicitly that he was making it (which at first even made it difficult for
me to follow his arguments). It was a live demonstration of its importance, and
indeed I soon realized that it was the most fundamental assumption in machine
learning. And the problem of prediction under the IID assumption looked much
more down-to-earth and less philosophical than providing frequentist founda-
tions of probability (my preferred approach to the foundations of probability
being based on Kolmogorov’s Principle B rather than Principle A).

It was very natural to apply what I knew about typicalness deficiency to
Vapnik’s IID picture, as described briefly in [56, Sect. 2.9.2]. The ideal picture
of prediction under IID or exchangeability is straightforward (and described in
[55]). Let us suppose that each observation z consists of two components, an
object x and its label y, and our task is to predict the label of a test object.
Suppose the observation space Z := X × Y is finite, where X is the object
space and Y is the label space, both non-empty. Let |Y| > 1. The possibility
of the decomposition Z := X × Y does not restrict generality since we allow
|X| = 1. The upper or lower semicomputable functions producing IID and
exchangeability deficiencies are given both X and Y as inputs (which are subsets
of fixed aggregates of constructive objects). Given a training sequence z1, . . . , zn
and a test object xn+1, our task is to predict the label yn+1 of xn+1. We say
that yn+1 is the true label of the test object xn+1 while labels y ̸= yn+1 are
false. The number N := n+1 can be interpreted, as is often done in conformal
prediction, as the length of the “augmented training sequence” (the training
sequence extended by the test object xn+1 with a possible label y).

In “universal prediction” we can use typicalness deficiency for evaluating the
plausibility of various potential labels for the test object xn+1. For that we can
use any of DpX, DpR, DeX, or DeR, but for concreteness, let us concentrate on
Kolmogorov’s DpX (which is particularly close to conformal prediction).

Remark 5. In the rest of this paper I will avoid using the expression “universal
prediction” because of another unfortunate terminological clash (in addition to
that between statistical randomness and algorithmic randomness discussed in
Sect. 1). On one hand, the adjective “universal” may mean “related to universal
partial computable functions”, as in “universal p-test”. On the other hand,
Nouretdinov et al. [29] applied it to conformal prediction meaning that, under
IID, it does not lose much in efficiency as compared with any other prediction
method that is valid in the same sense. The two meanings are very different, so I
will usually say “ideal prediction” rather than “universal prediction” when talking
about prediction in the ideal picture based on universal partial computable
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functions.

Our prediction and how confident we can be in it can be figured out by
looking at the exchangeability deficiencies

f(y) := DpX(z1, . . . , zn, xn+1, y) (6)

for various potential labels y ∈ Y for the test object. (I am omitting parentheses
in expressions such as DpX(z1, . . . , zn, (xn+1, y)) if this is unlikely to lead to a
misunderstanding.) For example, we can use

ŷn+1 ∈ argmin
y∈Y

DpX(z1, . . . , zn, xn+1, y)

(let us assume, for simplicity, that the argmin is attained at one point only) as
the point prediction for the true test label yn+1. However, the full prediction
function f defined by (6) contains a lot of other useful information. For example,
we can be confident that our point prediction is correct, ŷn+1 = yn+1, if the
second smallest value f(y) is large (presumably the smallest value is f(yn+1)
under exchangeability).

The point prediction ŷn+1 complemented by the second smallest value of f is
a useful summary of the full prediction function f . Another way to summarize
the prediction function (6) is to fix a significance level ϵ ∈ Q (such as 5% or 1%)
and output a prediction set using − lb ϵ as threshold,

Γϵ := {y ∈ Y : DpX(z1, . . . , zn, xn+1, y) < − lb ϵ} (7)

(as in [56, Sect. 2.2.4] but with p-values measured on the logarithmic scale).
Notice that in this ideal picture the prediction sets are constructively closed
(i.e., their indicator functions are upper semicomputable), which is natural:
when computing the ideal prediction sets we keep making them narrower and
narrower (i.e., better and better) as time passes.

The next question is how to make this ideal picture computable, so that
we could use, e.g., support vector machines to find some practical approxima-
tions to the ideal prediction sets (7). This was a well-rehearsed step, which I
had done earlier in, e.g., [46] when developing game-theoretic probability. The
idea is to use the algorithmic theory of randomness for getting a clear intuitive
picture of some area of probability or statistics, and then to strip the picture
of its algorithmic content. This makes results more precise and, in particular,
eliminates unspecified additive constants. The process is described in detail in
[59, Sect. 6], where Shafer and I present the algorithmic theory of randomness
as a tool of discovery.

Conformal prediction in its primitive binary form, which is a special case of
both conformal prediction and conformal e-prediction, was introduced in [16].
It was applicable only to binary classification, since it was based on support
vector machines. The nonconformity measure used in that paper assigns non-
conformity scores of 1 to support vectors and nonconformity scores of 0 to all
other observations. Let us call conformal prediction based on binary conformity
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Figure 2: Binary conformal prediction as special case of both conformal predic-
tion and conformal e-prediction. Calibration will be discussed in Sect. 6.4.

measures binary conformal prediction. See Fig. 2 for a pictorial representa-
tion, and see [63, Sect. 2] for a more general comparison of hypothesis testing
based on p-values and e-values with binary testing based on Cournot’s principle.
The exposition in [16], however, emphasized conformal e-prediction much more
prominently than conformal prediction.
Remark 6. In [16] we apply binary conformal prediction to a binary classifica-
tion problem. This is a random coincidence, and binary conformal prediction
is applicable to a wide range of prediction problems (see [52, Sect. 3] for an
example).

Perhaps the first public announcement of conformal prediction in a wide
sense (namely, of binary conformal prediction) happened in Alex’s inaugural
lecture in December 1996, which was later published locally as [17]. He and I
regarded it as a public report about the work carried out at CLRC and worked on
it together. My main contribution was to the section “Transduction” describing
the binary conformal predictor based on support vector machines and connecting
it to Vapnik’s idea of transductive inference. Conformal prediction proper was
introduced in [55] (and soon afterwards in [32], which mainly concentrated on
support vector machines).

Untypically for literature on conformal prediction, the paper [55] that in-
troduced it paid some attention to the ideal picture based on (6). One re-
mark that it makes [55, Remark 5] is that, in the binary classification problem
(Y = {−1, 1}), if the true data sequence z1, . . . , zN , where N = n + 1 and
zN = (xN , yN ) is the true test observation, is typical under IID, then the max-
imal value of the prediction function (6) will be lbN . This is again a manifes-
tation of the fundamental limitation of conformal prediction already mentioned
in the previous section.

Two other results stated in [55] extended relations between IID and ex-
changeability discussed in the previous section to the case of a general observa-
tion space Z; it turned out that Theorems 1 and 2 of [45] behave very differently
when the assumption Z = {0, 1} is dropped. Theorem 1 carries over to the case
of general Z without any problems. On the other hand, a chasm between IID
and exchangeability opens up when Z is large (or even infinite, which is allowed
in [55]); namely,

sup
ζ∈ZN

DpR(*ζ+)≥+ sup
ζ∈ZN

DeR(*ζ+)≥+ N lb e− 1

2
lbN (8)
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[55, Theorem 4], where DpR(* · +) is defined analogously to (3). The difference
between IID and exchangeability deficiencies now dwarfs the best p-deficiency
of lbN that can be used for prediction (the fundamental limitation of confor-
mal prediction; cf. (10) below). Formally, we did not allow |Z| = ∞ (just for
simplicity of definitions), but it is sufficient to assume that |Z| ≥ N . There are
no proofs in [55], but the argument in the proof of [50, Theorem 2, (16)] also
proves (8).

In principle, the vast difference (8) per se does not necessarily imply that
IID and exchangeability are so very different: a priori, both can be very large,
much greater than the difference. However, we can complement (8) by

sup
ζ∈ZN

DpX(*ζ+) =+ sup
ζ∈ZN

DeX(*ζ+) =+ 0,

where DpX(* · · · +) and DeX(* · · · +) are also defined analogously to (3). There-
fore, exchangeability deficiency can be small while IID deficiency is large. A
specific example of a data sequence demonstrating this is an algorithmically
random permutation of 1, . . . , N ; while it is perfectly exchangeable, it does not
look IID at all: given N , its IID p- and e-deficiency is

lb
NN

N !
∼ N lb e− 1

2
lbN.

5 Nouretdinov et al.’s discovery: universality of
conformal prediction

In the previous section, we saw that the difference between IID and exchange-
ability deficiencies can be very large. Does it mean that, under the IID as-
sumption, we can achieve much more than what can be achieved by conformal
prediction, which only relies on exchangeability? An important discovery by
Nouretdinov, V’yugin, and Alex [29] was that conformal prediction is univer-
sal: we do not lose much even under IID when using conformal prediction.
(I was among the authors of early versions of this paper, but at some point
Volodya V’yugin’s exposition became too technical for me, and I switched to
other projects. The final version of the paper is still very generous about my
contribution.)

To discuss the universality of conformal prediction under IID, it is useful to
distinguish between two sides of our prediction problem. For concreteness, let
us talk about IID p-deficiency DpR.

• If the true data sequence z1, . . . , zn, xn+1, yn+1 looks IID, i.e.,

DpR(z1, . . . , zn, xn+1, yn+1)

is small, we are in the situation of prediction proper ; we can output yn+1

as a confident prediction for the label of the test object xn+1 if

DpR(z1, . . . , zn, xn+1, y)
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is large for all false labels y.

• If the true data sequence z1, . . . , zn, xn+1, yn+1 does not look IID, i.e.,
DpR(z1, . . . , zn, xn+1, yn+1) is large, we are in the situation of anomaly
detection; in this case all of DpR(z1, . . . , zn, xn+1, y), y ∈ Y, can be ex-
pected to be large.

Nouretdinov et al. were interested in prediction proper, which is the most natu-
ral setting of the prediction problem. While the vast difference between IID and
exchangeability might well show in anomaly detection, it does not have to show
in prediction proper. In this terminology, the remark in [55, Remark 5] men-
tioned in the previous section says that, in the situation of prediction proper,
the maximal value of the prediction function is lbN (in the case of binary classi-
fication; remember that N := n+1). Now at least we have a rough coincidence
of the upper bounds: what can be achieved under IID (namely, deficiency of
lbN) can also be achieved already by conformal prediction (lbN is allowed
by its fundamental limitation). This coincidence hints at the universality of
conformal prediction, but Nouretdinov et al. [29] paint a much fuller picture.

An e-test E for exchangeability or IID is said to be train-invariant if, for all
n and for all data sequences (z1, . . . , zn, zn+1) ∈ Zn+1,

E(z1, . . . , zn, zn+1) = E(zσ(1), . . . , zσ(n), zn+1)

for all permutations σ of {1, . . . , n}. In this definition, z1, . . . , zn is interpreted as
training sequence and zn+1 as test observation. If such an E is used as predictor
(e.g., replacing DpX in (6) by E), we can refer to *z1, . . . , zn+ as training bag, or,
colloquially, as training set, which is a standard expression in machine learning;
E does not depend on the ordering of the bag. In the same way we define train-
invariant p-tests for exchangeability. (Nouretdinov et al. used the expression
“invariant” for our “train-invariant”, but in this paper we will use “invariant” in
a different, much narrower, sense.)

The first result reported in [29], their Proposition 1, is Ilia Nouretdinov’s
observation that the class of conformal predictors (understood to be functions
producing conformal p-values for all possible labels y ∈ Y for the test object)
essentially coincides with the class of train-invariant p-tests for exchangeability.
Namely, each function in the former class is dominated (in the sense of being
less than or equal to) by some function in the latter class, and vice versa.

It is also easy to check that the class of train-invariant e-tests for exchange-
ability essentially coincides, in the same sense, with the class of conformal e-
predictors as defined in [51]. (The only difference is that “dominates” means “is
greater than or equal to” in the case of e-tests.)

There exist a universal train-invariant p-test for exchangeability, a universal
train-invariant e-test for exchangeability, a universal train-invariant p-test for
IID, and a universal train-invariant e-test for IID. We fix such tests and denote
their binary logarithms (with the sign reversed in the case of the p-tests) by
DptX, DetX, DptR, and DetR, respectively.

15



Remark 7. Nouretdinov et al. [29, Sect. 4.2] used the expression “i-test” rather
than “e-test”, and I had used “i-values” for “e-values” earlier in [49, Sect. 5].
When working on [62], I misremembered “i-” as “e-”. In hindsight, “e-” (stand-
ing for “expectation”) appears to be a better counterpart of “p-” (standing for
“probability” in the context of p-values) than “i-” (standing for “integral”).

The following theorem is the main result of [29] (Theorem 2, slightly sim-
plified). In it, n ranges over N, Z = X × Y as before, (z1, . . . , zn) (training
sequence) ranges over Zn, (xn+1, yn+1) (test observation) over Z, and y (possi-
ble labels of xn+1) over Y.

Theorem 2. Letting ζ := (z1, . . . , zn) stand for the training sequence, we have

DpR(ζ, xn+1, y)− 2 lbDpR(ζ, xn+1, y)− 4DpR(ζ, xn+1, yn+1)− 4 lb |Y|
≤+ DptX(ζ, xn+1, y)≤+ DpR(ζ, xn+1, y). (9)

Theorem 2 is Nouretdinov et al.’s statement of universality for conformal
prediction in classification problems. By classification I mean, informally, pre-
diction with a small number |Y| of classes. In this case and in the situation of
prediction proper (i.e., DpR(ζ, xn+1, yn+1) also being small), (9) implies that

DptX(ζ, xn+1, y) ≈ DpR(ζ, xn+1, y),

i.e., ideal conformal prediction is almost as efficient as ideal prediction under
IID.

Since DpR ≈ DeR and DptX ≈ DetX (with the approximate equalities holding
to within logarithmic terms), (9) also holds, perhaps with the coefficients 2 and
4 replaced by larger ones, for DeR and DetX in place of DpR and DptX. In other
words, conformal e-prediction is also universal in classification problems.

Theorem 1 connecting IID and exchangeability was an important compo-
nent of the proof of Theorem 2 in [29] (that component was stated there as
Proposition 7). The role of this connection will be clearly seen in the functional
version of Nouretdinov et al.’s result stated in the following section.

Now we can discuss properly the fundamental limitation of conformal pre-
diction and its significance. Because of the upper limit of 1/(n+1) on conformal
p-values, we have

DetX(ζ, xn+1, y)≤+ DptX(ζ, xn+1, y)≤+ lb(n+ 1) = lbN, (10)

where ζ := (z1, . . . , zn). In the situation of classification and prediction proper,
DpR(ζ, xn+1, yn+1) =

+ 0, (9) implies

DpR(ζ, xn+1, y)≤+ lbN +O(lb lbN).

This continues to hold with DeR in place of DpR. Therefore, the fundamental
limitation of conformal prediction is also a limitation of prediction proper under
IID in general classification problems (not necessarily binary classification, as
in [55, Remark 5]).
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Remark 8. The inequalities “≤+” in (10) are, of course, tight. The most confi-
dent prediction can be made where, e.g., the training sequence is (0, . . . , 0) (n
zeros for a large n); then the confidence with which we can predict that the test
label is 0 as well is reflected in the large value of

DetX(0, . . . , 0, 1) =+ DptX(0, . . . , 0, 1) =+ lb(n+ 1).

6 Perspective of the functional theory of random-
ness

As already mentioned, most of the groundbreaking results in [29] (all but Propo-
sition 1) involve unspecified constants. The goal of this section is to explain
how the functional theory of randomness makes those results more practical:
instead of dealing with functions defined to within an additive constant, now we
are dealing with inclusions and other relations between various function classes.
Very few proofs will be given, and most of them can be found in [54] (which also
covers the case of regression, while this paper is constrained to classification,
similarly to [29]). Otherwise, this section is more detailed and self-contained
than the previous ones.

In one respect, the setting of this section is simpler than our setting so far;
since unspecified constants are gone, the observation space Z and the length of
the training sequence n do not need to vary explicitly. Our setting can also be
made more general for free; since the theory of algorithms is also gone, now we
just assume that the object space X is a non-empty measurable space. However,
we are still interested in the classification problem, where the label space Y is
finite with |Y| ≥ 2 and equipped with the discrete σ-algebra. The observation
space Z = X × Y is then also a measurable space. In informal explanations,
I will assume that Y is a small set, such as in the case of binary classification
|Y| = 2 (it might be a good idea for the reader to concentrate on this case, at
least at first). Now both Z and the length n of the training sequence z1, . . . , zn
can be fixed throughout the section. Given a new test object xn+1, our task is to
predict xn+1’s label yn+1. We will be interested in “confidence predictors”, i.e.,
algorithms for this prediction problem producing valid measures of confidence,
such as p-values or e-values. While the notion of confidence predictor is informal,
later I will give formal definitions of several classes of confidence predictors.

6.1 Eight function classes
To translate Nouretdinov et al.’s results into the functional theory of random-
ness, it is useful to introduce eight function classes representing eight kinds of
confidence predictors based on three dichotomies:

• the assumption about the data-generating mechanism can be IID (R) or
exchangeability (X);
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• with each potential label of a test object we can associate its p-value or
e-value;

• optionally, we can require the train-invariance (abbreviated to “t”) of the
confidence predictor.

The combination X/p/t corresponds to the conformal predictors, while the com-
binations R/p and R/e correspond to the most general confidence predictors
under the IID assumption. Following [29], one of our goals will be to establish
the closeness of the conformal predictors (i.e., X/p/t predictors) to the R/p
predictors; this goal is attractive since confidence predictors based on p-values
enjoy a more intuitive property of validity than those based on e-values. Our
argument will also establish the closeness of the conformal e-predictors (i.e.,
X/e/t predictors) to the R/e predictors. Such closeness can be interpreted as
the universality of conformal prediction and conformal e-prediction. We will
also consider simplified versions of these goals.

In the rest of this section we will explore

• the difference between IID and exchangeability predictors in Sect. 6.2 (and
these results will be summarized in Corollary 1 and simplified in Corol-
lary 2),

• the effect of imposing the requirement of train-invariance in Sect. 6.3 (sum-
marized in Theorem 6),

• and the difference between confidence predictors based on p-values and
those based on e-values in Sect. 6.4.

The overall picture will be summarized in Corollary 3 and simplified in Corol-
lary 4, both in Sect. 6.4.

My informal explanations will sometimes be couched in the language of the
“naive theory of randomness” postulating the existence of the largest or small-
est, as appropriate, element in each function class; this element will be called
“universal”. Even though formally self-contradictory, this postulate makes some
intuitive sense along the lines of the algorithmic theory of randomness. (To make
statements of the naive theory of randomness more palatable, it may sometimes
be helpful to qualify them using words such as “almost”, but not in this paper.)
In this way, instead of using the algorithmic theory of randomness for both for-
mal analysis and intuitive considerations, we may use the functional theory of
randomness for the former and the naive theory of randomness for the latter.

Figure 3 shows the eight function classes as a cube in each panel. Let us
concentrate on its left panel for now ignoring the right one. We start from the
function class in the top left corner (of the exterior square), PR. It consists of all
IID p-variables on Zn+1, i.e., functions P : Zn+1 → [0, 1] such that, for all IID
probability measures R = Qn+1 on Zn+1, we have (1). (By default all functions
referred to as “variables” are assumed to be measurable.) The importance of the
class PR stems from IID being the standard assumption of machine learning.
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Figure 3: A cube representing eight function classes. The polygonal chain PR–
ER–EX–EtX–PtX is shown in red in the left panel.

The p-variable P can be used as a “confidence transducer”, in the terminology
of [56, Sect. 2.7.1]. Given a training sequence z1, . . . , zn and a test object xn+1,
we can compute the p-value P (z1, . . . , zn, xn+1, y) for each possible label y for
xn+1 (as before, p-values and e-values are just values taken by p-variables and
e-variables, respectively). We can regard P (z1, . . . , zn, xn+1, ·) to be a fuzzy set
predictor for yn+1. To obtain a crisp set predictor, we can choose a significance
level ϵ ∈ (0, 1) and define the prediction set

Γϵ(z1, . . . , zn, xn+1) := {y ∈ Y : P (z1, . . . , zn, xn+1, y) > ϵ} (11)

by thresholding (cf. (7)). By the definition of p-variables, the probability of
error (meaning yn+1 /∈ Γϵ(z1, . . . , zn, xn+1)) for this crisp set predictor will not
exceed ϵ.

In [56, Sect. 2.1.6] confidence predictors were defined as nested families Γϵ,
ϵ ∈ (0, 1), and were called conservatively valid if Γϵ makes an error with prob-
ability at most ϵ. This includes the families defined by (11) as a subclass, and
in general the inclusion is proper. However, the difference is not essential, as
spelled out in Propositions 2.14 and 2.15 of [56]. We will refer to the IID p-
variables P : Zn+1 → [0, 1] as IID p-predictors (or, more fully, IID confidence
p-predictors).

The top right corner (“Kolmogorov’s corner”) in Fig. 3, PX, is the class that
consists of all exchangeability p-variables on Zn+1, i.e., functions P : Zn+1 →
[0, 1] satisfying (1) for all ϵ ∈ (0, 1) and all exchangeable probability measures R
on Zn+1. Such p-variables serve as exchangeability p-predictors. Naively, a data
sequence ζ ∈ Zn+1 is exchangeable (resp. IID) if U(ζ) is not small, U being the
universal exchangeability (resp. IID) p-variable.

The bottom left corner of Fig. 3, PtR, is the class of the train-invariant IID
p-variables (elements of PR), and its bottom right corner PtX is the class of the
train-invariant exchangeability p-variables.

The top left corner ER of the interior square in Fig. 3 consists of all IID
e-variables on Zn+1, i.e., functions E : Zn+1 → [0,∞] such that, for all IID
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probability measures R on Zn+1, ∫
E dR ≤ 1 (12)

(which generalizes (2)). By Markov’s inequality, 1/ ER ⊆ PR (where 1/ ER

consists of all 1/E, E ∈ ER). We will also refer to e-variables E ∈ ER as IID
e-predictors. For a given training sequence z1, . . . , zn and test object xn+1, the
e-value E(z1, . . . , zn, xn+1, y) for each y ∈ Y tells us how unlikely y is as label y
for xn+1. Therefore, E(z1, . . . , zn, xn+1, ·) is again a soft set predictor for yn+1.

The other function classes in Fig. 3 are defined in a similar way; EX consists
of all exchangeability e-variables on Zn+1, i.e., functions E : Zn+1 → [0,∞]
satisfying (12) for all exchangeable R. Finally, EtR and EtX consist of all train-
invariant functions in ER and EX, respectively. As before, these e-variables may
be referred to as e-predictors, depending on context. The right panel of Fig. 3
shows all inclusions between our eight classes, with an arrow A → B from A to
B meaning A ⊆ B.

It is interesting that all four confidence predictors on the right of the cubes in
Fig. 3 have names (either existing or trivial modifications of existing) containing
the word “conformal”:

• PX (the exchangeability p-predictors) are the weak conformal predictors
[56, Sect. 2.2.8 and Proposition 2.9];

• EX (the exchangeability e-predictors) are the weak conformal e-predictors;

• PtX (the train-invariant exchangeability p-predictors) are the conformal
predictors [56, Proposition 2.9];

• EtX (the train-invariant exchangeability e-predictors) are the conformal
e-predictors (see Sect. 6.3 below).

As already mentioned, the equivalence of PtX and conformal prediction was first
established in [29, Proposition 1].

Returning to the very informal language of the naive theory of randomness,
our discussion of calibration in Sect. 6.4 will show that IID data sequences
ζ ∈ Zn+1 can be defined as those for which U(ζ) is not large, U being the
universal (i.e., largest in this context) IID e-variable. Similarly, exchangeable
data sequences ζ can be defined as those for which U(ζ) is not large, U being
the universal (largest) exchangeability e-variable.

Following [29], we will connect two opposite vertices of the cube in the left
panel of Fig. 3, PR (IID p-prediction) and PtX (conformal prediction). These
vertices are important since PR corresponds to most general confidence predic-
tion under the standard assumption of machine learning and PtX is understood
very well and has been widely implemented (see, e.g., [8] and [10]).

A convenient path connecting PR and PtX is shown as the bold red polygonal
chain in the left panel of Fig. 3. It will be used in stating the closeness of PR

and PtX considered as predictors (Corollary 3 below, analogous to Nouretdinov
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et al.’s main result). Namely, we will establish the closeness for each step in the
path separately:

• The step from PR to ER (from p-values to e-values for IID) is the calibra-
tion step, to be discussed in Sect. 6.4.

• The step from ER to EX (from IID to exchangeability) is the key one; we
will call it Kolmogorov’s step. It is the topic of Sect. 6.2.

• The step from EX to EtX (adding train-invariance) is easier (if we do not
worry about its optimality). We will call it the train-invariance step. It
is discussed in Sect. 6.3.

• The step from EtX (conformal e-prediction) to PtX (conformal prediction)
is the e-to-p calibration step, and it is also one of the topics of Sect. 6.4.

However, we will also be interested in other edges of the cube in the left
panel of Fig. 3, first of all the edge connecting PtR and PtX. A useful connection
between these two classes will be obtained as a by-product (Corollary 4).

6.2 Kolmogorov’s step
In principle, besides the eight function classes shown in Fig. 3, we are also
interested in the following two:

• the class E iR consisting of invariant IID e-variables: E ∈ E iR if E ∈ ER

and E is invariant w.r. to all permutations of its arguments;

• the analogous class P iR consisting of invariant IID p-variables, which is
the class of all P ∈ PR that are invariant w.r. to all permutations of their
arguments.

In this paper we will only use E iR. When E ∈ E iR is chosen in advance and
E(z1, . . . , zn+1) is large for the realized data sequence z1, . . . , zn+1, we are enti-
tled to reject the hypothesis that its configuration *z1, . . . , zn+1+ was generated
in the IID manner. Therefore, E iR is the analogue of DeR(* · +) in the functional
theory of randomness (and P iR is the analogue of DpR(* · +)).

The following theorem is the functional version of the relation (4) between
IID and exchangeability.

Theorem 3. The class ER is the pointwise product of EX and E iR:

ER = EX E iR . (13)

The pointwise product of function classes E1 and E2 is defined as the class of
all products E1E2 for E1 ∈ E1 and E2 ∈ E2, where E1E2 is the pointwise
product of functions, (E1E2)(ζ) := E1(ζ)E2(ζ). For a proof of Theorem 3, see
[50, Corollary 3]. However, since this result is derived in [50] as a corollary
of a much more general statement [50, Theorem 1] and in order to make the
exposition more self-contained, let me give a simple independent derivation.
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Proof of Theorem 3. We consider the probability space Zn+1 equipped with an
IID probability measure R and consider Zi, i = 1, . . . , n+1, to be zi regarded as
a random observation. Formally, Zi is the random element on that probability
space defined by Zi(z1, . . . , zn+1) := zi. The expectation symbol E = ER refers
to this probability space.

To prove the inclusion “⊆” in (13), let E ∈ ER. Set

F (z1, . . . , zn+1) :=
1

(n+ 1)!

∑
π

E(zπ(1), . . . , zπ(n+1)),

E′(z1, . . . , zn+1) :=
E(z1, . . . , zn+1)

F (z1, . . . , zn+1)

(with 0/0 := 1), π ranging over the permutations of {1, . . . , n+1}. It is obvious
that E′ ∈ EX, and it is also easy to check that F ∈ E iR:

E(F (Z1, . . . , Zn+1)) =
1

(n+ 1)!

∑
π

E(E(Zπ(1), . . . , Zπ(n+1)))

≤ 1

(n+ 1)!

∑
π

1 = 1

(the inequality uses the fact that Zπ(1), . . . , Zπ(n+1) are IID).
To prove the inclusion “⊇” in (13), let E ∈ EX and F ∈ E iR. Let us check

that their product is in ER:

E (E(Z1, . . . , Zn+1)F (Z1, . . . , Zn+1))

= E (E (E(Z1, . . . , Zn+1)F (Z1, . . . , Zn+1) | G))
= E (F (Z1, . . . , Zn+1)E (E(Z1, . . . , Zn+1) | G))
≤ E (F (Z1, . . . , Zn+1)) ≤ 1,

where G is the bag σ-algebra as defined in [56, Sect. A.5.2]; the first inequality
follows from [56, Lemma A.3].

In terms of the naive theory of randomness, (13) implies that the universal
IID e-variable is the product of the universal exchangeability e-variable and
the universal invariant IID e-variable. This shows that the difference between
being IID and exchangeability lies in the configuration being IID. Therefore,
the following theorem establishes a connection between IID e-predictors and
exchangeability e-predictors.

Theorem 4. For each invariant IID e-variable F there exists an IID e-variable
G such that, for all z1, . . . , zn, zn+1 = (xn+1, yn+1), and y ̸= yn+1,

G(z1, . . . , zn, zn+1) ≥
1

e(|Y| − 1)
F (z1, . . . , zn, xn+1, y). (14)

We apply this theorem (see Corollary 1 below) in the context where
z1, . . . , zn, zn+1 is the true data sequence with zn+1 being the test observation
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and y is a false label; ideally such y should be excluded by our confidence
predictor. If z1, . . . , zn+1 is IID and F is the universal invariant IID e-variable,
F (z1, . . . , xn+1, y) will be small, and so there will be little difference between
the degrees to which a false label for the test object will be rejected by the
universal e-predictors under IID and exchangeability.

Let me give an informal argument why *z1, . . . , zn, xn+1, y+ not being IID
for y ̸= yn+1 implies the true data sequence

(z1, . . . , zn, xn+1, yn+1)

not being IID either. Consider, for simplicity, the case of binary labels. If
after flipping the last label in the true data sequence (z1, . . . , zn, xn+1, yn+1)
the bag of its elements becomes non-IID, then either already the original bag
*z1, . . . , zn, xn+1, yn+1+ was non-IID or the last element (xn+1, yn+1) was special
in the true data sequence, and in any case already the original data sequence
was non-IID. A formal proof is given in [54].

The following asymptotic result says that the |Y| in the denominator of (14)
is in some sense optimal (provided it is large enough).

Theorem 5. For each constant c > 1 the following statement holds true for a
sufficiently large |Y| and a sufficiently large n. There exists an invariant IID
e-variable F such that for each IID e-variable G there exist z1, . . . , zn, zn+1 =
(xn+1, yn+1), and y ̸= yn+1 such that

G(z1, . . . , zn, zn+1) <
c

e |Y|
F (z1, . . . , zn, xn+1, y).

Theorem 5 is proved in [54]. The idea of the proof can be explained
informally using the algorithmic theory of randomness (or even more infor-
mally using the naive theory of randomness): we can make the label y in
the bag *z1, . . . , zn, xn+1, y+ encode the bag *y1, . . . , yn+ of the other labels;
if we also make y easily distinguishable from the other labels, the value
F (z1, . . . , zn, xn+1, y) of the universal invariant IID e-variable will be large.

Let us now state explicitly a corollary of Theorems 3 and 4 that expresses
the universality of weak conformal e-prediction.

Corollary 1. For each IID e-predictor E there exist an exchangeability e-predic-
tor E′ and an IID e-variable G such that, for all z1, . . . , zn, zn+1 = (xn+1, yn+1),
and y ̸= yn+1,

E′(z1, . . . , zn, xn+1, y) ≥
1

e(|Y| − 1)

E(z1, . . . , zn, xn+1, y)

G(z1, . . . , zn, zn+1)
. (15)

The informal interpretation of (15) is that, in classification, every false label
y for the test object is excluded by an exchangeability e-predictor once it is
excluded by an IID e-predictor, unless the true data sequence (z1, . . . , zn+1) is
not IID. For this interpretation, there is no need to take E, E′, and G universal.
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Proof of Corollary 1. Let E be an IID e-variable. By Theorem 3, there exist an
exchangeability e-variable E′ and an invariant IID e-variable E′′ such that

E(z1, . . . , zn, xn+1, y) = E′(z1, . . . , zn, xn+1, y)E
′′(z1, . . . , zn, xn+1, y) (16)

for all z1, . . . , zn, xn+1, y. By Theorem 4 there exists an IID e-variable G such
that

G(z1, . . . , zn, zn+1) ≥
1

e(|Y| − 1)
E′′(z1, . . . , zn, xn+1, y) (17)

for all z1, . . . , zn, zn+1 = (xn+1, yn+1), and y ̸= yn+1. It remains to combine
(16) and (17).

Remark 9. In Corollary 1 it is possible to have, in principle, 0 in the denominator
in (15). Our interpretation of an inequality A ≥ cBC , where A, c,B,C are
all nonnegative, covering the possibility of C = 0 is that it is equivalent, by
definition, to AC ≥ cB. Similar remarks can be made about other results, such
as Theorem 6 below.

An important variation on Corollary 1 is where the original IID e-predictor
E is already train-invariant. Under the IID assumption, it seems useless to
consider predictors that are not train-invariant, and indeed the requirement
of train-invariance follows [54, Sect. 2] from fundamental statistical principles,
such as the sufficiency principle and the invariance principle. In this case the
resulting predictor E′ will also be train-invariant and, therefore, a conformal
predictor.

Corollary 2. For each train-invariant IID e-predictor E there exist a conformal
e-predictor E′ and an IID e-variable G such that, for all z1, . . . , zn, zn+1 =
(xn+1, yn+1), and y ̸= yn+1, we have (15).

Corollary 2 is a statement of universality of conformal e-prediction under train-
invariance.

6.3 Train-invariance step
Let us say that G = G(z1, . . . , zn | zn+1) is a test-conditional exchangeability
e-variable (given the test observation) if

∀(z1, . . . , zn+1) :
1

n!

∑
σ

G
(
zσ(1), . . . , zσ(n) | zn+1

)
≤ 1,

σ ranging over the permutations of {1, . . . , n}. This property implies G ∈ EX. If
G = G(z1, . . . , zn | zn+1) is large for the universal test-conditional exchangeabil-
ity e-variable G, the sequence z1, . . . , zn is not exchangeable given zn+1. (And
G being large is a stronger property than z1, . . . , zn+1 not being exchangeable.)

For any exchangeability e-predictor E, define the corresponding train-
invariant exchangeability e-predictor Ē by

Ē(z1, . . . , zn, zn+1) :=
1

n!

∑
σ

E
(
zσ(1), . . . , zσ(n), zn+1

)
,
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σ again ranging over the permutations of {1, . . . , n}. This is the train-invariance
step. The following theorem says that Ē is almost as good as E in our prediction
problem unless z1, . . . , zn+1 is not exchangeable.

Theorem 6. For each exchangeability e-predictor E there exists a test-con-
ditional exchangeability e-variable G such that, for all z1, . . . , zn, all zn+1 =
(xn+1, yn+1), and all y ̸= yn+1,

Ē(z1, . . . , zn, xn+1, y) ≥
1

|Y| − 1

E(z1, . . . , zn, xn+1, y)

G(z1, . . . , zn | zn+1)
.

The intuition behind Theorem 6 is that each exchangeability e-predictor
can be made train-invariant without significant loss of efficiency in classification
proper. For a simple proof, see [54].

6.4 Other steps
In previous sections we discussed the two interior red steps shown in the left
panel of Fig. 3. Here we will discuss the two other red steps and summarize the
overall picture obtaining a version of [29, Theorem 2] in the functional theory
of randomness. These two steps are analogues of the inequalities (5) in the
functional theory of randomness.

Conversion from p-values to e-values (calibration) and vice versa (e-to-p
calibration) is understood very well: see, e.g., [62, Sect. 2]. E-to-p calibration
is particularly simple: there is one optimal e-to-p-calibrator, e 7→ min(1/e, 1)
[62, Proposition 2.2]. As for calibration, a decreasing function f : [0, 1] → [0,∞]

is a calibrator (transforms p-values into e-values) if and only if
∫ 1

0
f ≤ 1 [62,

Proposition 2.1]. We will use the calibrator

f(p) := δpδ−1 (18)

for a fixed value δ ∈ (0, 1). If δ is small, f(p) will be close to 1/p if we ignore the
multiplicative constant (as customary in the algorithmic theory of randomness).
Other popular calibrators are

f(p) :=


∞ if p = 0

κ(1 + κ)κp−1(− ln p)−1−κ if p ∈ (0, exp(−1− κ)]

0 if p ∈ (exp(−1− κ), 1]

for a constant κ > 0 (see [62, Appendix B]; this calibrator is even closer to 1/p
than (18) with a small δ) and Shafer’s [34, Sect. 3, (6)] calibrator

f(p) := p−1/2 − 1.

The lines between the corresponding P and E vertices in the right panel of
Fig. 3 stand for the possibility of calibration or e-to-p calibration (similarly to
the double-headed arrow in Fig. 2).

The following result combines all the previous statements in this section.
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Corollary 3. Let δ ∈ (0, 1). For all P ∈ PR there exist P ′ ∈ PtX and G ∈ ER

such that, for all observations z1, . . . , zn, zn+1 = (xn+1, yn+1), and labels y ̸=
yn+1,

P ′(z1, . . . , zn, xn+1, y)

≤ e(|Y| − 1)2

δ
G(z1, . . . , zn+1)

2P (z1, . . . , zn, xn+1, y)
1−δ. (19)

Corollary 3 reduces (as usual, imperfectly) IID p-predictors to conformal
predictors. It says that in classification problems every false label excluded by
an IID p-predictor is excluded by a conformal predictor (perhaps less strongly)
unless the true data sequence is non-IID. It is an analogue of [29, Theorem 2].

Proof of Corollary 3. Let P ∈ PR and δ ∈ (0, 1). We will construct P ′ ∈ PtX

and G ∈ ER satisfying (19) in several steps. Since (18) is a calibrator, there is
E ∈ ER satisfying

E(z1, . . . , zn, xn+1, y) ≥ δP (z1, . . . , zn, xn+1, y)
δ−1 (20)

(in fact, with “=” in place of “≥”); here and in the rest of the proof we will leave
“for all z1, . . . , zn, zn+1 = (xn+1, yn+1), and y ̸= yn+1” implicit. By Corollary 1,
there exist E′ ∈ EX and G1 ∈ ER such that

E′(z1, . . . , zn, xn+1, y) ≥
1

e(|Y| − 1)

E(z1, . . . , zn, xn+1, y)

G1(z1, . . . , zn, zn+1)
. (21)

By Theorem 6, there exist E′′ ∈ EtX and G2 ∈ ER such that

E′′(z1, . . . , zn, xn+1, y) ≥
1

|Y| − 1

E′(z1, . . . , zn, xn+1, y)

G2(z1, . . . , zn, zn+1)
. (22)

Finally, since e 7→ min(1/e, 1) is an e-to-p calibrator, there is P ′ ∈ PtX satisfying

P ′(z1, . . . , zn, xn+1, y) ≤ 1/E′′(z1, . . . , zn, xn+1, y). (23)

It remains to combine (20)–(23) and set G :=
√
G1G2. (By the inequality

between the geometric and arithmetic means, G ∈ ER.)

Of course, Corollary 3 continues to hold if the condition P ∈ PR is replaced
by P ∈ PX. In this case, however, we can drop step (21) and replace (19) by

P ′(z1, . . . , zn, xn+1, y) ≤
|Y| − 1

δ
G(z1, . . . , zn+1)P (z1, . . . , zn, xn+1, y)

1−δ.

The most important case, however, is where P ∈ PtR. Now we can drop
step (22), as spelled out in the following corollary.

Corollary 4. Let δ ∈ (0, 1). For each P ∈ PtR there exist P ′ ∈ PtX and
G ∈ ER such that, for all z1, . . . , zn, zn+1 = (xn+1, yn+1), and y ̸= yn+1,

P ′(z1, . . . , zn, xn+1, y) ≤
e(|Y| − 1)

δ
G(z1, . . . , zn+1)P (z1, . . . , zn, xn+1, y)

1−δ.
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Corollary 4 reduces train-invariant IID p-prediction to conformal prediction
without significant loss in efficiency. Since the condition of train-invariance is so
natural under the IID assumption, Corollaries 2 and 4 may be the most useful
statements in this section.

7 Conclusion
This paper further develops the functional theory of randomness in the direction
of Nouretdinov, V’yugin, and Gammerman’s work on universality of conformal
prediction. While the statements of the functional theory of randomness may be
less intuitive than those of the algorithmic theory of randomness, they are more
precise avoiding unspecified constants and are simpler in an important respect:
e.g., the analogue of (13) in the algorithmic theory of randomness, (4), involves
the condition “| DeR(*ζ+)”, which disappears in (13). In the naive theory of
randomness we could write, instead,

DeR(ζ) = DeX(ζ) +DeR(*ζ+).

For the reader familiar with the algorithmic theory of complexity, the condition
“| DeR(*ζ+)” is analogous to the second entry of “K(x)” in the Levin–Chaitin
formula

K(x, y) =+ K(x) +K(y | x,K(x))

[38, Theorem 67]. Conditions of this type can be removed in the functional
theory of randomness and functional theory of complexity (the latter introduced
in [50, Appendix]).

In Sect. 2 I emphasized the narrowness of both IID and exchangeability as-
sumptions, whereas this paper concentrates on what can be achieved under IID.
There have been many developments in conformal prediction beyond exchange-
ability, such as those in [3, 6, 19, 40]; see also the review [1, Chap. 7]. For all of
them, exchangeability serves as a starting point.
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