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Abstract

Conformal predictors provide set or functional predictions that are valid un-
der the assumption of randomness, i.e., under the assumption of independent
and identically distributed data. The question asked in this paper is whether
there are predictors that are valid in the same sense under the assumption of
randomness and that are more efficient than conformal predictors. The answer
is that the class of conformal predictors is universal in that only limited gains
in predictive efficiency are possible. The previous work in this area has relied
on the algorithmic theory of randomness and so involved unspecified constants,
whereas this paper’s results are much more practical. They are also shown to
be optimal in some respects.
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1 Introduction

The main assumption of machine learning is that of randomness, i.e., the as-
sumption that the observations are independent and identically distributed
(IID). The method of conformal prediction [1,18] allows us to complement pre-
dictions output by standard machine-learning algorithms by some measures of
confidence in those predictions that are valid under the assumption of random-
ness. However, conformal prediction only uses the assumption of exchangeabil-
ity, which is much weaker than randomness; in particular, the difference between
randomness and exchangeability completely dwarfs the differences that are rele-
vant in conformal prediction; see Remark 3 below for details. A natural question
is whether conformal prediction loses much by not using the full strength of the
assumption of randomness and only using exchangeability. The main message
of this paper and the earlier paper by Nouretdinov et al. [9] is that the an-
swer is “no” (we don’t lose much), at least in the first approximation. In the
terminology of [9], conformal prediction is universal.

The main limitation of the pioneering paper [9] is that it is based on the
algorithmic theory of randomness. Because of that, Nouretdinov et al.’s results
involve unspecified constants and, therefore, are never applicable to practical
machine learning. This paper’s results are more precise in several respects, but
the main one is that they only involve fully specified constants and, therefore,
open up the possibility of quantifying real-world limitations of conformal pre-
dictors. Other advances of this paper as compared with [9] are that our results
are not restricted to the case of classification, but in the case of classification
they are stronger and are complemented by optimality results.

To demonstrate that conformal prediction does not lose much by not using
the full strength of the assumption of randomness, this paper introduces the
most general class of predictors, “randomness predictors”, which produce pre-
dictions of the same kind as conformal predictors but are only required to be
valid under the assumption of randomness. There are many more randomness
predictors than conformal predictors, and our question is whether conformal
predictors are as good as arbitrary randomness predictors. The answer given
in this paper is a qualified yes: every randomness predictor P can be modelled
by a conformal predictor P ′ so that the predictions output by P ′ are almost as
good as those output by P , unless we are entitled to reject the randomness of
the true data sequence. It is unclear whether the difference between conformal
and randomness prediction can be usefully exploited at all (cf. [15]).

One simplifying assumption made in this paper is that it concentrates on
predictors that are train-invariant, i.e., invariant w.r. to permutations of the
training sequence. (We will remove this assumption only in Appendix B.) The
assumption of train-invariance for predictors is extremely natural under the
assumption of randomness for the data. It is reflected in the standard expression
for a training sequence being “training set” in machine learning; since “set”
implies the lack of order, this expression is only justified for train-invariant
predictors (and even in this case it is not justified completely; it would have
been more accurate to say “training bag”). In fact, conformal predictors can

1



be defined as train-invariant predictors that are valid under exchangeability [9,
Proposition 1]. This will be discussed in detail in Sect. 2, where we will also
see that the requirement of train-invariance is justified by general principles of
statistical inference.

Conformal prediction is usually presented as a method of set prediction [18,
Part I], i.e., as a way of producing prediction sets (rather than point predictions).
Another way to look at a conformal predictor is as a way of producing a p-
value function (discussed, in a slightly different context, in, e.g., [5]), which is
a function mapping each possible label y of a test object to the corresponding
conformal p-value. In analogy with “prediction sets”, we may call such p-value
functions “prediction functions”. The prediction set Γα corresponding to a
prediction function f and a significance level α ∈ (0, 1) (our target probability
of error) is the set of all labels y such that f(y) > α. A standard property of
validity for conformal predictors is that Γα makes an error (fails to cover the true
label) with probability at most α; it is implied by the conformal p-values being
bona fide p-values (under suitable assumptions, such as data exchangeability).

To establish connections between conformal and randomness predictors we
will use conformal e-predictors [14], which are obtained by replacing p-values
with e-values (for the definition of e-values, see, e.g., [6], [10], [19], or Sect. 2
below). Conformal e-predictors output e-value functions f as their prediction
functions. Such functions f can also be represented in terms of the correspond-
ing prediction sets Γα := {y | f(y) < α}, where α ∈ (0,∞) is the significance
level (notice that now we exclude the labels with large e-values from the predic-
tion set, which is opposite to what we did for p-values). However, the property
of validity of conformal e-predictors is slightly more difficult to state in terms of
prediction sets: now validity means that the integral of the probability of error
for Γα over α ∈ (0,∞) does not exceed 1 [14, end of Appendix B]. This implies
that the probability of error for Γα is at most 1/α, but this simple derivative
property of validity is much weaker.

Conformal e-predictors are not only a useful technical tool, but we can also
use them for prediction directly. In Shafer’s opinion [11], e-values are even more
intuitive than p-values. Because of the importance of e-predictors, in the rest of
this paper we will use the word “predictor” in combinations such as “conformal
predictor” and “randomness predictor” generically, including both p-predictors
(standard predictors based on p-values) and e-predictors (predictors based on
e-values); in particular, we will never drop “p-” in “p-predictor”. This is a
potential source of confusion, and the reader should keep in mind that the usual
notion of conformal predictors corresponds to conformal p-predictors in this
paper.

We start in Sect. 2 from the main definitions, including those of conformal
and randomness predictors. The main classes of predictors that we are interested
in in this paper are shown in Figure 1. All four classes are train-invariant. An
arrow going from class A to class B means embedding: A ⊆ B. Section 3
is devoted to the main results, first for e-predictors in Subsect. 3.1 and then
for p-predictors in Subsect. 3.2. A line between classes A and B in Figure 1
means the possibility of transformations from f ∈ A to f ′ ∈ B and vice versa;
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Figure 1: A square representing the main classes of predictors considered in
this paper: EtR (train-invariant randomness e-predictors), EtX (conformal e-
predictors), PtR (train-invariant randomness p-predictors), and PtX (conformal
p-predictors).

such transformations, called “calibration”, will be discussed at the beginning
of Subsect. 3.2 and will serve as a way of deducing results for p-predictors
from those for e-predictors. In the two subsections, we establish the predictive
efficiency of conformal predictors among randomness predictors in both e- and
p-versions. Namely, the prediction functions for conformal predictors turn out,
under the proviso of the true data sequence looking IID, to be competitive
on average with the prediction functions for any randomness predictors, where
“on average” refers to an arbitrary probability measure that can depend on
the test example. These results are illustrated on the simple case of binary
classification. Section 4 gives applications to multi-class classification and some
optimality results, while Sect. 5 concludes listing some limitations of our results
and directions of further research.

Our notation for the base of natural logarithms will be e ≈ 2.72 (while italic
e will often serve as a generic notation for e-values).

2 Definitions

This paper deals with the following prediction problem. We are given a training
sequence of examples zi = (xi, yi), i = 1, . . . , n for a fixed n, each consisting of
an object xi and its label yi, and a new test object xn+1; the task is to predict
xn+1’s label yn+1. A potential label y for xn+1 is true if y = yn+1 and false
otherwise (therefore, while there is only one true label for xn+1, there may be
numerous false labels). The objects are drawn from a non-empty measurable
space X, the object space, and the labels from the label space Y, which is
assumed to be a non-trivial measurable space (meaning that the σ-algebra on
it is different from {∅,Y}).

A measurable function P : Zn+1 → [0, 1] is a randomness p-variable if,
for any probability measure Q on Z and any significance level α ∈ (0, 1),
Qn+1({P ≤ α}) ≤ α. Such a function P is an exchangeability p-variable if
R({P ≤ α}) ≤ α for any exchangeable probability measure R on Zn+1 and any
α ∈ (0, 1). (Equivalently, P is an exchangeability p-variable if, for any data se-
quence in Zn+1 and any threshold α ∈ (0, 1), the fraction of the permutations of
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the data sequence at which P ≤ α does not exceed α.) And a real-valued func-
tion P defined on Zn+1 is train-invariant if it is invariant w.r. to permutations
of the training examples:

P (zσ(1), . . . , zσ(n), zn+1) = P (z1, . . . , zn, zn+1)

for each data sequence (z1, . . . , zn+1) ∈ Zn+1 and each permutation σ of
{1, . . . , n}. In other words, train-invariant functions should depend on the train-
ing examples z1, . . . , zn only via the training bag *z1, . . . , zn+. Finally, P is a
conformal p-variable if it is a train-invariant exchangeability p-variable.

We will sometimes refer to the values taken by p-variables as p-values, and
our notation for the classes of all randomness, train-invariant randomness, ex-
changeability, and conformal p-variables will be PR, PtR, PX, and PtX, respec-
tively.

Conformal p-variables can be used for prediction, and we will also refer to
them as conformal p-predictors (they are usually called simply “conformal pre-
dictors”; cf. [1,18]). There are several ways to package the output of conformal
p-predictors, as discussed in Sect. 1. One is in terms of set prediction: for each
significance level α ∈ (0, 1), each training sequence z1, . . . , zn, and each test
object xn+1, we can output the prediction set

Γα := {y ∈ Y | P (z1, . . . , zn, (xn+1, y)) > α}. (1)

By the definition of conformal p-variables, under the assumption of exchange-
ability, the probability that a conformal p-predictor makes an error at signifi-
cance level α, i.e., the probability of yn+1 /∈ Γα, is at most α.

Instead of predicting with one prediction set in the family (1), in this paper
we prefer to package our prediction as the prediction function

f(y) := P (z1, . . . , zn, (xn+1, y)), y ∈ Y. (2)

We may refer to this mode of prediction as functional prediction. The step from
set prediction to functional prediction is analogous to the step from confidence
intervals to p-value functions (see, e.g., [8, Sect. 9] and [4, 5] for the latter).

Remark 1. There are several equivalent definitions of conformal p-predictors,
and the definition as train-invariant exchangeability p-variables (first given in [9,
Proposition 1]) is one of them. Let us check that it is equivalent to, e.g., the
definition of conformal p-values given in [18, (2.20)] for a fixed length n of the
training sequence. In one direction, it is obvious that conformal p-values as
defined there are train-invariant and valid under exchangeability. On the other
hand, given a train-invariant exchangeability p-variable P , we can define the
nonconformity measure

A(*z1, . . . , zn+1+, zi) := 1/P (zi+1, . . . , zn+1, z1, . . . , zi),

and the resulting conformal p-values will dominate P (dominate in the sense of
being less than or equal to).
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Remark 2. The term “functional prediction” is a straightforward modification
of “set prediction” and “p-value function”, but its disadvantage is that it is
easy to confuse with function prediction, namely predicting a function (e.g., a
biological function, such as that of a protein, or a mathematical function).

Similarly, we can use randomness p-variables for prediction, and then we
refer to them as randomness p-predictors. By definition, the probability that
the prediction set (1) derived from a randomness p-predictor makes an error
is at most α, this time under the assumption of randomness. We will use the
prediction functions (2) for randomness p-predictors as well. Less important,
we call exchangeability p-variables exchangeability p-predictors.

Remark 3. The difference between the assumptions of randomness and ex-
changeability disappears for infinite data sequences under a mild assumption
about the example space Z (it is required to be a Borel space). This follows
from de Finetti’s theorem, which represents exchangeable probability measures
as integral mixtures of product probability measures Q∞. The difference be-
comes very significant for finite data sequences of a given length; this is relevant
for our prediction problems where we deal with randomness or exchangeability
of the “augmented training sequences” z1, . . . , zn, (xn+1, y) of length N := n+1
(cf. (1) and (2)). See [17] for a detailed exposition. In particular, it is shown
in [17] that, for any N and assuming Z is rich enough, there exists an event
A ⊆ ZN such that R(A) = 1 for some exchangeable probability measure R on
ZN while QN (A) ≤ 2−N+1 for all probability measures Q on Z. Therefore, as-
suming N ≫ 1, a randomness p-variable assigns tiny p-values of at most 2−N+1

to each data sequence in A while the event A is perfectly plausible under ex-
changeability. It is easy to see that the smallest possible p-value (2) output by
a conformal p-predictor is 1/N ; this was called the “fundamental limitation of
conformal prediction” in [15]. While 2−N+1 shrinks exponentially as N grows,
1/N only shrinks polynomially fast. In this sense, the difference between ran-
domness and exchangeability is by far more significant than what is attainable
in conformal prediction.

Two standard desiderata for conformal, and by extension randomness, pre-
dictors are their validity and efficiency. In terms of the prediction function f ,
validity concerns the value f(yn+1) of f at the true label (the typical values
should not be too small in p-prediction), and efficiency concerns the values f(y)
at the false labels y ̸= yn+1 (they should be as small as possible in p-prediction).
Validity is automatic under randomness (and even under exchangeability for
conformal predictors), and in this paper we are interested in the efficiency of
conformal predictors relative to other randomness predictors. Later in the pa-
per (Theorem 5 and Corollary 7 below) we will establish efficiency guarantees
for conformal prediction in terms of randomness prediction.

A nonnegative measurable function E : Zn+1 → [0,∞] is a randomness
e-variable if

∫
E dQn+1 ≤ 1 for any probability measure Q on Z. It is an ex-

changeability e-variable if
∫
E dR ≤ 1 for any exchangeable probability measure

R on Zn+1. We will denote the classes of all randomness and exchangeability
e-variables by ER and EX, respectively. The class of all measurable functions
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E : Zn+1 → [0,∞] is denoted by E . It is easy to see that E ∈ E belongs to EX

if and only if, for any data sequence z1, . . . , zn+1,

1

(n+ 1)!

∑
π

E(zπ(1), . . . , zπ(n+1)) ≤ 1, (3)

π ranging over the permutations of {1, . . . , n+ 1}.
The class EtX of conformal e-variables consists of all functions E ∈ EX

that are train-invariant. We often regard the randomness e-variables E ∈ ER

as randomness e-predictors and conformal e-variables E ∈ EtX as conformal
e-predictors. Similarly to (2), they output prediction functions

f(y) := E(z1, . . . , zn, (xn+1, y)), y ∈ Y.

Remark 4. Similarly to Remark 1, it is easy to check that a train-invariant
exchangeability e-variable is the same thing as a conformal e-predictor as defined
in, e.g., [14]. Indeed, the nonconformity e-measure [14, Sect. 2] corresponding
to a train-invariant exchangeability e-variable E is

A(z1, . . . , zn+1) :=
(
E(z2, . . . , zn+1, z1), E(z3, . . . , zn+1, z1, z2), . . . ,

E(z1, z2, . . . , zn+1)
)
.

The subclass EtR ⊆ ER of all train-invariant randomness e-predictors is im-
portant since under the assumption of randomness it is natural to consider only
train-invariant predictors: the requirement of train-invariance is a special case of
the principle of sufficiency in statistical inference [2, 2.3.(ii)]. The requirement
of train-invariance under the assumption of randomness (the “train-invariance
principle”) is a special case not only of the sufficiency principle but also of the
invariance principle [2, Example 2.35], which makes it even more convincing.

For conformal and randomness e-predictors, validity and efficiency change
direction as compared with p-predictors: for validity, typical values f(yn+1)
should not be too large, and for efficiency typical values f(y) at the false labels
y ̸= yn+1 should be as large as possible. Again validity is automatic under ran-
domness, and Theorem 5 below establishes efficiency guarantees for conformal
e-prediction in terms of train-invariant randomness e-prediction. Similarly to
ER and EtX, the elements of the class EX will be referred to as exchangeability
e-predictors, but we are not particularly interested in them per se.

We will also need another, even narrower, subclass of ER, E iR ⊆ EtR. The
class E iR consists of all e-variables E ∈ ER that are invariant w.r. to all permu-
tations:

E(zπ(1), . . . , zπ(n+1)) = E(z1, . . . , zn+1)

for each permutation π of {1, . . . , n+1}; let us call such randomness e-variables
invariant. An equivalent definition is to say that E(z1, . . . , zn+1) depends on
the data sequence z1, . . . , zn+1 only via the bag *z1, . . . , zn+1+ of its elements.
The interpretation is that the value E(z1, . . . , zn+1) for E ∈ E iR is the degree
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Table 1: Function classes defined in Sect. 2

notation description defined on

PR randomness p-variables/p-predictors page 4
PX exchangeability p-variables/p-predictors page 4
PtR train-invariant randomness p-variables/p-predictors page 4
PtX conformal (= train-invariant exchangeability) p-variables/p-predictors page 4

ER randomness e-variables/e-predictors page 5
EX exchangeability e-variables/e-predictors page 5
EtR train-invariant randomness e-variables/e-predictors page 6
EtX conformal (= train-invariant exchangeability) e-variables/e-predictors page 6

E all [0,∞]-valued random variables page 6
E iR invariant randomness e-variables page 6

to which we can reject the hypothesis that the bag *z1, . . . , zn+1+ resulted from
its elements being generated in the IID fashion.

The function classes introduced in this section are listed in Table 1. It
might appear that there is some redundancy in our terminology, since, e.g.,
we refer to the same mathematical objects as both exchangeability p-variables
and exchangeability p-predictors. However, these terms are applied in different
contexts and are not interchangeable in informal discussions. Namely, exchange-
ability p-variables test the assumption of exchangeability for given data, whereas
exchangeability p-predictors accept exchangeability and use it for prediction (re-
jecting future observations that would lead to rejection of exchangeability). The
same remark is applicable to the assumption of randomness and to e-variables
and e-predictors.

A big advantage of e-variables over p-variables is that the average of e-
variables is again an e-variable. This allows us to define, given an e-variable
E ∈ ER, two derivative e-variables:

Ei(z1, . . . , zn+1) :=
1

(n+ 1)!

∑
π

E(zπ(1), . . . , zπ(n+1)), (4)

EX(z1, . . . , zn+1) :=
E(z1, . . . , zn+1)

Ei(z1, . . . , zn+1)
, (5)

with π ranging over the permutations of {1, . . . , n + 1} and 0/0 interpreted as
1 (the last convention may be relevant to (5)). More generally, we can allow
any E ∈ E in (4) and (5). It is clear that Ei ∈ E iR whenever E ∈ ER and that
EX ∈ EX for all E ∈ E .

To see the intuitive meaning of (4) and (5), let us start from a generic
randomness e-variable E ∈ ER. It does not have to be an exchangeability e-
variable, but we would like to make an exchangeability e-variable out of it, i.e.,
we want the average of the values of the new e-variable over all permutations

7



of the input data sequence to be at most 1 (see (3)). Then (5) is simply the
result of normalizing E: we divide E by its average over all permutations.
Therefore, EX is an exchangeability e-variable. The denominator, Ei, is what
distinguishes randomness e-variables from exchangeability e-variables. If E is
already an exchangeability e-variable, Ei will be at most 1, but randomness
e-variables E can play with their invariant component Ei.

In the most important for us case (transforming train-invariant randomness
e-predictors to conformal e-predictors), the operator (5) is polynomially com-
putable: namely, if E ∈ EtR is efficiently computable, the extra time when
computing EX ∈ EtX on top of computing E is linear, O(n). This follows from

EX(z1, . . . , zn+1) =
E(z1, . . . , zn+1)

1
n+1

∑n+1
i=1 E(zi+1, . . . , zn+1, z1, . . . , zi)

for E ∈ EtR.

3 Main results

Let B be a Markov kernel with source Z and target Y, which we will write in
the form B : Z ↪→ Y (as in [18, Sect. A.4]). We will write B(A | z) for its
value on z ∈ Z and A ⊆ Y (where A is measurable) and write

∫
f(y)B(dy | z)

for the integral of a function f on Y w.r. to the measure A 7→ B(A | z). We
will show that the efficiency of the conformal predictor derived from a train-
invariant randomness predictor E is not much worse than the efficiency of the
original randomness predictor E on average, and B will define the meaning of
“on average”.

3.1 From train-invariant randomness e-prediction to con-
formal e-prediction

The following statement shows that efficiency does not suffer much on average
when we move from randomness e-prediction to exchangeability e-prediction. It
is more general than what we need at the moment, since it also covers random-
ness e-predictors that are not train-invariant.

Theorem 5. Let B : Z ↪→ Y be a Markov kernel. For each randomness e-
predictor E,

G(z1, . . . , zn, zn+1) := e−1

∫
E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) (6)

(with 0/0 set to 0 and zn+1 represented as (xn+1, yn+1)) is a randomness e-
variable.

We can interpret (6) as a statement that EX is almost as efficient as E unless
the true data sequence z1, . . . , zn+1 does not look IID. The “unless” clause makes
sense in view of our assumption of randomness. According to (6) and assuming
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that B(· | zn+1) is concentrated on Y \ {yn+1}, the mean ratio of the degree to
which E rejects a false label y to the degree to which EX rejects y is not large
under any probability measure that may depend on the test example unless
we can reject the assumption of randomness for the true data sequence. The
gap e−1 ≈ 0.37 between the mean ratio and the e-value at which we reject the
assumption of randomness is optimal (Theorem 6 below).

From now on, until the end of the main paper, let us assume that E is train-
invariant in Theorem 5, i.e., E is a train-invariant randomness e-predictor (the
only exceptions are Corollary 7 and the line following its statement). Then EX

in (6) is a conformal e-predictor.
A full proof of Theorem 5 will be given in Sect. A.1, but we will demonstrate

the idea of the proof on a simple special case, which also makes the statement
of the theorem more tangible. In the case of binary classification, Y := {−1, 1},
the most natural choice of B is B({y} | (x, y)) := 0, so that the Markov kernel
sends every example (x, y) to the other label −y. We can then rewrite (6) as

G(z1, . . . , zn, zn+1) := e−1 E(z1, . . . , zn, (xn+1,−yn+1))

EX(z1, . . . , zn, (xn+1,−yn+1))
, (7)

which does not involve any averaging. We can interpret (7) as the conformal e-
predictor EX being almost as efficient as the original train-invariant randomness
e-predictor E, where efficiency is measured by the degree to which we reject the
false label −yn+1. For example, for a small positive constant ϵ, G ≥ 1/ϵ with
probability at most ϵ, and so

EX(z1, . . . , zn, (xn+1,−yn+1)) > e−1ϵE(z1, . . . , zn, (xn+1,−yn+1)) (8)

with probability at least 1− ϵ.
To get an idea of the proof, suppose the true data sequence z1, . . . , zn+1,

generated in the IID fashion, is such that the ratio in (7) is large. By definition,
the ratio Ei = E/EX is an invariant randomness e-variable, and so only depends
on the bag of its input examples and measures the degree to which that bag does
not look IID. Flipping the label of a randomly chosen zi, i ∈ {1, . . . , n+ 1}, in
the training bag *z1, . . . , zn+1+ leads to a data bag that is still compatible with
the assumption of randomness, and if flipping the label yn+1 in the training bag
leads to a large value of E/EX, this means that the example zn+1 was unusual in
the training bag, which makes the original data sequence z1, . . . , zn+1, in which
the unusual example is also the last one, not compatible with the assumption
of randomness.

The following result is a simple statement of optimality for Theorem 5.

Theorem 6. The constant e−1 in Theorem 5 cannot be replaced by a larger
one, even if we assume E ∈ EtR.

In principle, Theorem 6 follows from a later result (namely, Theorem 8
below), but in Sect. A.2 we will give a simple independent proof. The origin
of the factor e−1 is the difference between the assumptions of randomness and
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exchangeability: while flipping the label of a randomly chosen example zi, i ∈
{1, . . . , n + 1}, keeps the exchangeability of the original IID data sequence,
the new sequence ceases to be generated in the IID fashion. Therefore, we
approximate flipping the label of one randomly chosen example by flipping the
label of each example zi, i ∈ {1, . . . , n+ 1}, with a small probability; e−1 is the
largest probability (which is attainable) that exactly one label will be flipped.
Full details are given in Sect. A.1.

3.2 From train-invariant randomness p-prediction to con-
formal p-prediction

It is known that, for any δ ∈ (0, 1), the function p 7→ δpδ−1 transforms p-
values to e-values and that the function e 7→ e−1 transforms e-values to p-
values. See, e.g., [19, Propositions 2.1 and 2.2]. More generally, any function
f : [0, 1] → [0,∞] integrating to 1 transforms p-values to e-values (is a p-to-e
calibrator), while e 7→ min(e−1, 1) is the optimal way of transforming e-values to
p-values (it is an optimal e-to-p calibrator). This allows us to adapt Theorem 5
to p-predictors.

Corollary 7. Let B : Z ↪→ Y be a Markov kernel and let δ ∈ (0, 1). For each
randomness p-predictor P there exists an exchangeability p-predictor P ′ such
that

G(z1, . . . , zn, zn+1) :=
δ

e

∫
P ′(z1, . . . , zn, (xn+1, y))

P 1−δ(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) (9)

is a randomness e-variable.

The proof is obvious (calibrate P to get E ∈ EX and then calibrate EX to
get P ′ ∈ PX), but it is still spelled out in Sect. A.3. As before, we concentrate
on the case where P is train-invariant, and in this case P ′ can be chosen as
conformal p-predictor.

The interpretation of (9) is much simpler in the binary case Y = {−1, 1}
with the same Markov kernel as before. In this case (9) becomes

G(z1, . . . , zn, zn+1) :=
δ

e

P ′(z1, . . . , zn, (xn+1,−yn+1))

P 1−δ(z1, . . . , zn, (xn+1,−yn+1))
.

Therefore,

P ′(z1, . . . , zn, (xn+1,−yn+1)) <
e

δϵ
P 1−δ(z1, . . . , zn, (xn+1,−yn+1))

with probability at least 1− ϵ.
In conclusion of this section, let us discuss (9) in general. The inter-

pretation of (9) is that, under the randomness of the true data sequence,
P ′(z1, . . . , zn, (xn+1, y)) is typically small (perhaps not to the same degree) when
P (z1, . . . , zn, (xn+1, y)) is small; i.e., we do not lose much in efficiency when con-
verting train-invariant randomness p-predictors to conformal p-predictors. To
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see this, fix small ϵ1, ϵ2 ∈ (0, 1). Then we will have G(z1, . . . , zn, zn+1) < 1/ϵ1
for the true data sequence z1, . . . , zn, zn+1 unless a rare event (of probability at
most ϵ1) happens. For the vast majority of the potential labels y ∈ Y we will
then have

δ

e

P ′(z1, . . . , zn, (xn+1, y))

P 1−δ(z1, . . . , zn, (xn+1, y))
<

1

ϵ1ϵ2
, (10)

where “the vast majority” means that the B(· | zn+1) measure of the y satisfying
(10) is at least 1− ϵ2. We can rewrite (10) as

P ′(z1, . . . , zn, (xn+1, y)) <
e

δϵ1ϵ2
P 1−δ(z1, . . . , zn, (xn+1, y)), (11)

so that P ′(z1, . . . , zn, (xn+1, y)) → 0 as P (z1, . . . , zn, (xn+1, y)) → 0. In terms
of prediction sets (see (1)), (11) means that the conformal p-predictor P ′ pro-
duces prediction sets that are as precise as, or more precise than, the prediction
sets produced by the train-invariant randomness p-predictor P if we relax the
significance level, assuming that the assumption of randomness is not rejected
for the true data sequence and ignoring labels in a set of a small B(· | zn+1)
measure. This is true, of course, for any Markov kernel B.

4 Applications to multi-class classification and
optimality results

In this section we discuss the case of classification, |Y| < ∞, but now we are
interested in the non-binary case |Y| > 2 (the σ-algebra on Y is discrete, as
usual). Let us only discuss reduction of train-invariant randomness e-predictors
to conformal e-predictors. Reduction of train-invariant randomness p-predictors
to conformal p-predictors is completely analogous; it just uses (9) instead of (6).

In the case of multi-class classification, 2 < |Y| < ∞, the most natural
Markov kernel B is perhaps the one for which B(· | (x, y)) is the uniform
probability measure on Y \ {y}. In this case we can rewrite (6) as

G(z1, . . . , zn, zn+1) :=
e−1

|Y| − 1

∑
y∈Y\{yn+1}

E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
. (12)

The interpretation of (12) is that the conformal e-predictor EX is almost as
efficient as the original train-invariant randomness e-predictor E on average; as
before, efficiency is measured by the degree to which we reject the false labels
y ̸= yn+1. Roughly, on average, we lose at most a factor of e in the e-values of
false labels when we replace E by EX.

Of course, we can avoid “on average” by making (12) cruder and replacing
it by the existence of G ∈ ER satisfying

∀(z1, . . . , zn) ∈ Zn ∀xn+1 ∈ X ∀y ∈ Y \ {yn+1} :

11



G(z1, . . . , zn, zn+1) ≥
e−1

|Y| − 1

E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
, (13)

where zn+1 := (xn+1, yn+1). For a small positive constant ϵ, we can then claim
that, with probability at least 1− ϵ over the true data sequence,

∀y ∈ Y \ {yn+1} : EX(z1, . . . , zn, (xn+1, y)) >
e−1ϵ

|Y| − 1
E(z1, . . . , zn, (xn+1, y)).

(14)
An interesting variation of (12), corresponding to the Markov kernel B for

which B(· | (x, y)) is the uniform probability measure on Y, is

G(z1, . . . , zn, zn+1) :=
e−1

|Y|
∑
y∈Y

E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
. (15)

Under this definition, the randomness e-variable G does not depend on yn+1.
Let us check that the denominators, |Y| − 1 or |Y|, in (12), (13), and (15)

are asymptotically optimal.

Theorem 8. For each constant c > 1 the following statement holds true for a
sufficiently large |Y| and a sufficiently large n. There exists a train-invariant
randomness e-predictor E such that for each randomness e-variable G there exist
z1, . . . , zn, zn+1 = (xn+1, yn+1), and y ̸= yn+1 such that

G(z1, . . . , zn, zn+1) <
ce−1

|Y|
E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
.

When we say “for a sufficiently large |Y|” in Theorem 8, the lower bound on
|Y| is allowed to depend on c, and when we say “and a sufficiently large n”, the
lower bound on n is allowed to depend on c and |Y|.

A complete proof of Theorem 8 is given in Sect. A.4, but the informal idea of
the proof is that we can ignore the objects and make a false test label y ̸= yn+1

encode the bag *y1, . . . , yn+ of the training labels. We have Ei := E/EX ∈ E iR.
If we also make y easily distinguishable from the training labels y1, . . . , yn, the
value Ei(z1, . . . , zn, (xn+1, y)) (even if depending only on *z1, . . . , zn, (xn+1, y)+)
can be made large, even for a true data sequence generated in the IID fashion.

Formally, Theorem 8 is an inverse to (13) and (15), but it has several weak-
nesses in this role:

• It shows that EX is not competitive with E in some cases, but can there
be another conformal e-predictor E′ ∈ EtX that is better than EX in this
respect?

• Even if the ratio E(z1, . . . , zn, (xn+1, y))/E
′(z1, . . . , zn, (xn+1, y)) for E

′ ∈
EtX is very large, it is not so interesting if already E′(z1, . . . , zn, (xn+1, y))
is very large.

• Even if the ratio E(z1, . . . , zn, (xn+1, y))/E
′(z1, . . . , zn, (xn+1, y)) for E

′ ∈
EtX is very large, it is not so interesting if G(z1, . . . , zn, zn+1) is very large
for the true data sequence.
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The following result overcomes these weaknesses.

Theorem 9. For each constant c ∈ (0, 1) and each label space Y, 1 < |Y| < ∞,
the following statement holds true for sufficiently large n. There exists a train-
invariant randomness e-predictor E such that for each conformal e-predictor E′

and each randomness e-variable G there exist z1, . . . , zn, zn+1 = (xn+1, yn+1),
and y ̸= yn+1 such that

G(z1, . . . , zn, zn+1) ≤ 2, (16)

E′(z1, . . . , zn, (xn+1, y)) ≤ 2.01, (17)

E(z1, . . . , zn, (xn+1, y)) ≥ c |Y| . (18)

To compare Theorem 9 with Theorem 8, notice that (16)–(18) imply

G(z1, . . . , zn, zn+1) ≤
4.02c−1

|Y|
E(z1, . . . , zn, (xn+1, y))

E′(z1, . . . , zn, (xn+1, y))
.

Therefore, Theorem 9 implies Theorem 8, but only if we ignore the constant
factor 4.02e < 11.

Proof sketch of Theorem 9. Let us ignore the objects and set, without loss of
generality (assuming our prediction problem is classification),Y := {0, . . . , |Y|−
1}. Generate labels Y1, . . . , Yn+1 randomly (independently from the uniform
distribution on Y), and set Y ≡ −Y1 − · · · − Yn (mod |Y|); capital letters are
used to emphasize that the labels (elements of Y) are random. The idea is to
prove that the three events

G(Y1, . . . , Yn, Yn+1) ≤ 2, (19)

E′(Y1, . . . , Yn, Y ) ≤ 2.01, (20)

E(Y1, . . . , Yn, Y ) ≥ c |Y| (21)

(cf. (16)–(18), respectively) hold with probability at least 0.5, 0.502, and 0.999,
respectively. This will imply the statement of the theorem as their intersection
will be nonempty.

Since Y1, . . . , Yn+1 are IID and Y1, . . . , Yn, Y are exchangeable, the probabil-
ities of (19) and (20) are bounded by Markov’s inequality. And we can define
E to ensure that (21) holds with a small probability since Y1, . . . , Yn, Y are not
IID: were they IID, we would typically expect their sum to be divisible by |Y|
with probability close to 1/ |Y| for a large n.

Further details are given in Sect. A.5.

5 Conclusion

This paper gives explicit statements, not involving any unspecified constants, of
universality of conformal predictors. Namely, for each train-invariant random-
ness predictor there is a conformal predictor that is competitive with it. Some
constants is these statements have been shown to be optimal.

These are some directions of further research:
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• This paper shows that the attainable improvement on conformal predic-
tion under the assumption of randomness is limited, such as a factor of
e in the e-values for false labels (see, e.g., (7)). Can we develop prac-
tically useful predictors exploiting such potential improvements? (For a
toy example, see Remark 10 in Sect. A.2. Some experimental results are
reported in [15].)

• Can we connect PtR and PtX (in the spirit of Corollary 7) directly, without
a detour via e-values?

• A related remark is that all our optimality results (Theorems 6, 8, and 9)
cover only e-prediction. It would be ideal to have similar optimality results
for Corollary 7 or its stronger versions.

• The assumption of randomness is very strong, and there has been extensive
work devoted to relaxing this assumption; see, e.g., [13] and [1, Chap. 7].
To what degree do the results of this paper carry over to more general
settings?
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A Proofs

This appendix gives detailed proofs of all results stated in the main paper. The
Bernoulli model is defined as the statistical model (Bn+1

θ : θ ∈ [0, 1]), where Bθ

is the Bernoulli measure on {0, 1}, defined by Bθ({1}) := θ ∈ [0, 1].

A.1 Proof of Theorem 5

We will define G as G2G3, where G2 ∈ E iR and G3 ∈ EX (it is obvious that
these two inclusions will imply G ∈ ER). First we define an approximation G1

to G2 as

G1(z1, . . . , zn+1) :=
1

n+ 1

n+1∑
i=1

∫
Ei(z1, . . . , zi−1, (xi, y), zi+1, . . . , zn+1)B( dy | zi).

In other words, G1(z1, . . . , zn+1) is obtained by randomly (with equal proba-
bilities) choosing an example zi in the data sequence z1, . . . , zn+1, replacing its
label yi by a random label y ∼ B(· | zi), and finding the expectation of Ei

on z1, . . . , zn+1 modified in this way. We can see that G1 is invariant, but it
does not have to be in E iR. The invariant randomness e-variable G2 is defined
similarly, except that now we replace each label yi, i = 1, . . . , n+1, by a random
label y ∼ B(· | zi) with probability 1

n+1 (all independently). The key observa-
tion is that G2/G1 ≥ 1/e, which follows from the probability that exactly one
label will be changed in the construction of G2 being

(n+ 1)
1

n+ 1

(
n

n+ 1

)n

≥ 1/e.

Finally, G3 ∈ EX is defined by

G3(z1, . . . , zn+1) :=

∫
Ei(z1, . . . , zn, (xn+1, y))B(dy | zn+1)

G1(z1, . . . , zn+1)
.

Combining all these statements, we get the following randomness e-variable G′:

G′(z1, . . . , zn+1) := G2(z1, . . . , zn+1)G3(z1, . . . , zn+1)

≥ e−1G1(z1, . . . , zn+1)G3(z1, . . . , zn+1)

= e−1

∫
Ei(z1, . . . , zn, (xn+1, y))B(dy | zn+1). (22)

By the definition (5), (6) is equal to the expression in (22), and so G′ ∈ ER

implies that (6) is also a randomness e-variable.

A.2 Proof of Theorem 6

Without loss of generality we assume |X| = 1 (so that the objects become
uninformative and we can omit them from our notation) and Y = {−1, 1}
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(with the discrete σ-algebra). Define a randomness e-variable E by

E(y1, . . . , yn+1) :=


(
1− 1

n+1

)−n

if k = 1

0 if not,
(23)

where k is the number of 1s among y1, . . . , yn+1. This is indeed a randomness
e-variable, since the maximum probability of k = 1 in the Bernoulli model, (n+
1)θ(1− θ)n → max, is attained at θ = 1

n+1 . The corresponding exchangeability
e-variable is

EX(y1, . . . , yn+1) =

{
1 if k = 1

0 if not.
.

Both E and EX are train-invariant (and even invariant). Let B just flip the
label: B({−y} | y) = 1. Suppose Theorem 5 holds with the e−1 in (6) replaced
by c > e−1. Then the randomness e-variable G satisfies

G(0, . . . , 0) = c

(
1− 1

n+ 1

)−n

∼ ce > 1,

which is impossible for a large enough n (since the probability measure concen-
trated on (0, . . . , 0) is of the form Qn+1).

Remark 10. Whereas the randomness e-variable E defined by (23) is all we need
to prove Theorem 6, it is not useful for prediction. A variation on (23) that can
be used in prediction is

E(y1, . . . , yn+1) :=

(n+ 1)
(
1− 1

n+1

)−n

if (y1, . . . , yn, yn+1) = (0, . . . , 0, 1)

0 if not.

According to this randomness e-predictor, after observing n 0s in a row, we are
likely to see 0 rather than 1. This is a version of Laplace’s rule of succession.
While under randomness we have E(0, . . . , 0, 1) ∼ en, under exchangeability we
can only achieve EX(0, . . . , 0, 1) = n+ 1 ∼ n.

A.3 Proof of Corollary 7

Fix δ ∈ (0, 1) and P ∈ PR. Set E := δP δ−1 and P ′ := 1/EX, so that E ∈ ER

and P ′ ∈ PX. According to (6),

G(z1, . . . , zn, zn+1) := e−1

∫
E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

= e−1

∫
δP ′(z1, . . . , zn, (xn+1, y))

P 1−δ(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

is a randomness e-variable.
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A.4 Proof of Theorem 8

The examples z1, . . . , zn+1 whose existence is asserted in the statement of the
theorem and which will be constructed in this proof will all share the same fixed
object x0 ∈ X, and we will sometimes omit “x0” in our notation. Suppose,
without loss of generality, that the label set Y is the disjoint union of {0, 1}
and the set {−k, . . . , k} for some positive integer k; to distinguish between the
0s and the 1s in these two disjoint sets, let us write 0′ and 1′ for the elements
of the first set, {0, 1} = {0′, 1′}. (The primes are ignored, of course, when 0′

and 1′ are used as inputs to arithmetic operations, as in (24) below. If |Y|
is an even number, we can leave one of its elements unused.) To avoid trivial
complications, let n be an even number. This proof will assume 1 ≪ k ≪

√
n;

the formal meaning of this assumption will be summarized at the end of the
proof.

Define E ∈ EtR (which ignores the objects) as follows:

• on the sequences in Zn+1 of the form ((x1, y1), . . . , (xn, yn), (xn+1, y)),
where y1, . . . , yn ∈ {0′, 1′}, y ∈ {−k, . . . , k}, and

n∑
i=1

yi − n/2 = y, (24)

E takes value ae
√
π/2n3/2, where a < 1 is a positive constant (it will be

taken close to 1 later in the proof);

• E takes value 0 on all other sequences in Zn+1.

In (24), y is determined by y1 + · · · + yn and vice versa. This agrees with the
idea of the proof of Theorem 8 given after its statement: since y1, . . . , yn are
binary, y1 + · · ·+ yn carries the same information as *y1, . . . , yn+.

First we check that E is indeed a train-invariant randomness e-variable. Let
the underlying probability space be Zn+1 equipped with a probability measure
R = Qn+1, so that individual examples are generated independently fromQ. We
will use the notation Zi, i = 1, . . . , n+1, for zi considered as a random example
(formally, Zi is the random element defined by Zi(z1, . . . , zn+1) := zi) and the
notation Yi, i = 1, . . . , n + 1, for the label of Zi. The maximum probability of
the event E(Z1, . . . , Zn+1) > 0 is attained for Q giving maximum probabilities
to the following two events:

1. The random labels Y1, . . . , Yn take values in {0′, 1′}, and the remaining
random label Yn+1 takes value in {−k, . . . , k}.

2. Conditionally on the first event, we have (24), where y is the value taken
by Yn+1 and y1, . . . , yn are the values taken by Y1, . . . , Yn.

The maximum probability of the first event (in item 1) is(
1− 1

n+ 1

)n
1

n+ 1
∼ 1

en
,
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which is obtained by maximizing (1 − θ)nθ over θ and where the asymptotic
equivalence is as n → ∞. The maximum probability of the second event (in
item 2) conditional on both the first event and Yn+1 = y ∈ {−k, . . . , k} is
asymptotically equivalent, by the local limit theorem [12, Sect. 1.6], to

1√
2πn

(
1
2 + y

n

) (
1
2 − y

n

) =
1√

2πn
(

1
4 − y2

n2

) ∼
√

2

πn
;

this follows from the random variables Y1, . . . , Yn being distributed as Bn
θ , and

the maximum over θ being attained at θ = 1/2 + y/n. Since a < 1, E ∈ EtR

for a sufficiently large n. Notice that our argument in this paragraph only uses
k ≪ n, since in our application of the local limit theorem the exponential term
exp(. . . ) was 1.

Let us now generate Y1, . . . , Yn+1 from the Bernoulli model and find the
maximum probability that

n∑
i=1

Yi − n/2 ∈ {−k, . . . , k} (25)

(so that this condition does not involve Zn+1). Again by the local limit theorem,
the maximum probability is asymptotically equivalent to

2k + 1√
2πn/4

∼ 2
√
2k√
πn

;

it is attained at θ := 1/2. Now the assumption 1 ≪ k ≪
√
n is essential in order

for the exponential term in the local limit theorem to go away. Therefore, for
any G ∈ ER, there are y1, . . . , yn+1 ∈ {0′, 1′} such that

G(y1, . . . , yn+1) ≤
b
√
πn

2
√
2k

(remember that we are omitting x0), where b > 1 is a constant (to be chosen
close to 1 later), and

n∑
i=1

yi − n/2 ∈ {−k, . . . , k}

(cf. (25)). Fix such y1, . . . , yn+1 and set

y :=

n∑
i=1

yi − n/2

(cf. (24)). Taking a and b sufficiently close to 1, we obtain

G(y1, . . . , yn+1)

Ei(y1, . . . , yn, y)
= (n+ 1)

G(y1, . . . , yn+1)

E(y1, . . . , yn, y)
≤ b

√
πn(n+ 1)

2
√
2kae

√
π/2n3/2

<
c

e |Y|
(26)
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for a sufficiently large k. The equality “=” in (26) follows from {0′, 1′} and
{−k, . . . , k} being disjoint sets, the inequality “≤” follows from the definitions
of E and G, and the inequality “<” follows from |Y| = 2k + 3. This proves
Theorem 8 since Ei = E/EX.

Finally, the formal meaning of the condition 1 ≪ k ≪
√
n is that the first

sentence in the statement of Theorem 8 can be replaced by “For each constant
c > 1 there is C > 0 such that the following statement holds true assuming
|Y| ≥ C and

√
n ≥ C |Y|.”

A.5 Proof of Theorem 9

This section spells out details omitted in the proof sketch given in Sect. 4. As
mentioned there, the probability of (19) being at least 0.5 and the probability
of (20) being at least 0.502 follow immediately from Markov’s inequality. The
notation Y1, . . . , Yn+1 was introduced formally in Sect. A.4 (and used informally
already in the proof sketch of Theorem 9).

Now let us define E:

E(y1, . . . , yn+1) :={
c |Y| if S ≡ 0 (mod |Y|) and ∀y ∈ Y :

∣∣ky − n/ |Y|
∣∣ ≤ 0.1n/ |Y|

0 otherwise,
(27)

where S is the sum of y1, . . . , yn+1 and ky := |{i ∈ {1, . . . , n+ 1} | yi = y}| is
the number of times y ∈ Y occurs in the sequence y1, . . . , yn+1. We are required
to prove two statements for a large enough n: first, that E ∈ ER, and second,
that the probability of E(Y1, . . . , Yn, Y ) > 0 is at least 0.999 (see (21)).

The second statement is easier. Let y1, . . . , yn+1 be the values taken by
Y1, . . . , Yn, Y , respectively. Then the first condition

S ≡ 0 (mod |Y|) (28)

in (27) holds automatically, and the second condition

∀y ∈ Y :
∣∣ky − n/ |Y|

∣∣ ≤ 0.1n/ |Y| (29)

holds with probability that tends to 1 as n → ∞ for each y ∈ Y, by the central
limit theorem. Since Y is a finite set, the second statement has been proved.

Now let us prove the first statement. Let Q be a probability measure on
Y and set R := Qn+1. We will denote by A the event given after “if” in (27),
namely the conjunction of (28) and (29). It suffices to prove that asymptotically
as n → ∞ the R-probability of A does not exceed c−1/2/ |Y|, uniformly in Q.
Consider two cases:

• If Q({y}) ≥ 0.1/ |Y| for all y ∈ Y, the convergence R(A1) → 1/ |Y| as
n → ∞ for the superset A1 of A given by (28) follows from the asymptotic
uniformity result of Horton and Smith [7, Theorem (5.01)] (proved inde-
pendently by Dvoretzky and Wolfowitz [3, Theorem 2]). The convergence
is uniform on this compact set of Q.
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Figure 2: A cube representing the main classes of predictors considered in Ap-
pendix B. The right panel shows embeddings as arrows, as in Figure 1.

• If Q({y}) ≤ 0.1/ |Y| for some y ∈ Y, the convergence R(A2) → 0 as
n → ∞ for the superset A2 of A given by (29) follows from, e.g., the
central limit theorem combined with the Bonferroni correction for the
multiplicity of y. The convergence is again uniform on this compact set
of Q.

Combining the two cases, we get E ∈ ER (and so, obviously, E ∈ EtR).

B Reducing randomness predictors to confor-
mal

In the main paper we assumed the train-invariance of randomness predictors. In
this appendix we drop this assumption, since statistical principles may go astray
(see, e.g., the criticism [16] of the conditionality principle from the vantage point
of conformal prediction). Besides, in some cases we may have convincing reasons
to violate train-invariance, such as using inductive conformal predictors [18,
Sect. 4.2] for the purpose of computational efficiency.

The connections between various classes of predictors (introduced in the
main paper) that we use or explore in this appendix are shown in red in the
left-hand panel of Figure 2. Namely, we are interested in connections between:

(a) randomness e-predictors and exchangeability e-predictors;

(b) exchangeability e-predictors and conformal e-predictors;

(c) randomness p-predictors and randomness e-predictors;

(d) conformal e-predictors and conformal p-predictors.

Theorem 5 stated in Subsect. 3.1 is general enough to cover connection (a).
Connection (b) will be discussed in Sect. B.2. Connections (c) and (d) result

21



from the possibility of converting p-values to e-values and back, as discussed in
Subsect. 3.2.

In Sect. B.3 we will see how the connections shown in red in Figure 2 can
be combined to demonstrate the universality of conformal prediction without
accepting the train-invariance principle. Section B.4 applies this to classifica-
tion. But we start in Sect. B.1 by introducing an operator making randomness
predictors (in particular, exchangeability predictors) train-invariant.

B.1 Another operator

In addition to the operators (4) and (5), we will need another operator,

Et(z1, . . . , zn+1) :=
1

n!

∑
σ

E(zσ(1), . . . , zσ(n), zn+1), (30)

σ ranging over the permutations of {1, . . . , n}. Now we have Et ∈ EtX (resp.
Et ∈ EtR) whenever E ∈ EX (resp. Et ∈ ER). Both operators (4) and (30) are
kinds of averaging: while E 7→ Ei averages over all permutations of an input
data sequence (including both training and test examples), E 7→ Et averages
over the permutations of the training sequence only. And while E 7→ Ei is
polynomially computable for train-invariant E, E 7→ Et requires exponential
computation time in general.

Using two of the three operators (4), (5), and (30), we can turn any random-
ness e-variable E to an exchangeability e-variable EX to a conformal e-variable
(EX)t. The following lemma shows that the order in which the last two opera-
tors are applied does not matter.

Lemma 11. The operators t and X commute: for any E ∈ E, (Et)X = (EX)t.

Proof. Let us fix a data sequence z1, . . . , zn+1 and check

(Et)X(z1, . . . , zn+1) = (EX)t(z1, . . . , zn+1).

As functions of a permutation of z1, . . . , zn+1, E and EX are proportional to
each other, and therefore, Et and (EX)t are also proportional to each other.
This implies (Et)X = (EX)t on the permutations of z1, . . . , zn+1. And this is
true for each (z1, . . . , zn+1).

We will let tX stand for the composition of the two operators:

EtX := (Et)X = (EX)t.

Let us say that E ∈ EX is admissible if (3) always holds with “=” in place
of “≤”. (This agrees with the standard notion of admissibility in statistical
decision theory.) The intuition (which can be formalized easily) behind the four
operators that we have introduced in this paper is that:

• i projects ER onto E iR; it also projects the admissible part of EX onto the
identical 1;
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• X projects E onto the admissible part of EX;

• t projects EX onto EtX and ER onto EtR;

• tX projects E onto the admissible part of EtX.

In particular, these operators are idempotent:

(Ei)i = Ei, (EX)X = EX, (Et)t = Et, (EtX)tX = EtX

(and we can allow any E ∈ E here). Despite these operators being projections,
we cannot claim that these ways of moving between different classes of predictors
are always optimal.

Lemma 11 lists the only two cases where the combination of two of our three
basic operators (i, X, and t) gives something interesting. The other four cases
are:

(EX)i = (Ei)X = 1, (Ei)t = (Et)i = Ei.

B.2 Efficiency of making predictors train-invariant

To state our result in its strongest form, we define a test-conditional exchange-
ability e-variable G = G(z1, . . . , zn, zn+1) as an element of E satisfying

∀(z1, . . . , zn+1) ∀σ :
1

n!

∑
σ

G(zσ(1), . . . , zσ(n), zn+1) ≤ 1,

σ ranging over the permutations of {1, . . . , n}. Such G form a subclass of EX

(and therefore, of ER).

Theorem 12. Let B : Z ↪→ Y be a Markov kernel. For each exchangeability
e-predictor E,

G(z1, . . . , zn, zn+1) :=

∫
E(z1, . . . , zn, (xn+1, y))

Et(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) (31)

(with 0/0 interpreted as 0) is a test-conditional exchangeability e-variable.

The interpretation of (31) is similar to that of (6). It will be clear from
the proof that we can allow E to be any randomness e-predictor, or even any
element of E .

Proof of Theorem 12. Let us check that the right-hand side of (31) is a test-
conditional exchangeability e-variable:

1

n!

∑
σ

G(zσ(1), . . . , zσ(n), zn+1)

=
1

n!

∑
σ

∫
E(zσ(1), . . . , zσ(n), (xn+1, y))

Et(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)
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=

∫
Et(z1, . . . , zn, (xn+1, y))

Et(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) ≤ 1

(where we have “ ≤ 1” rather than “ = 1” because of our interpretation of
0/0).

B.3 Putting everything together

The following theorem combines Theorems 5 and 12 and establishes a connection
between randomness and conformal e-predictors, without accepting the train-
invariance principle. Remember that the conformal e-predictor EtX derived from
a randomness e-predictor E is obtained by combining the operators (5) and (30),
i.e., as

EtX(z1, . . . , zn+1) := (n+ 1)

∑
σ E(zσ(1), . . . , zσ(n), zn+1)∑

π E(zπ(1), . . . , zπ(n+1))
,

σ and π ranging over the permutations of {1, . . . , n} and {1, . . . , n+1}, respec-
tively.

Corollary 13. Let B : Z ↪→ Y be a Markov kernel. For each randomness
e-predictor E,

G(z1, . . . , zn, zn+1) := e−1/2

∫ √
E(z1, . . . , zn, (xn+1, y))

EtX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) (32)

is a randomness e-variable.

The main weakness of Corollary 13 is the presence of the term e−1/2, but it
might be inevitable.

Proof. Applying the Cauchy–Schwarz inequality, we have, for someG1, G2, G3 ∈
ER,

e−1/2

∫ √
E(z1, . . . , zn, (xn+1, y))

EtX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

= e−1/2

∫ √
E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))

√
EX(z1, . . . , zn, (xn+1, y))

EtX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

≤

√
e−1

∫
E(z1, . . . , zn, (xn+1, y))

EX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

×

√∫
EX(z1, . . . , zn, (xn+1, y))

EtX(z1, . . . , zn, (xn+1, y))
B(dy | zn+1)

=
√
G1(z1, . . . , zn+1)G2(z1, . . . , zn+1) ≤ G3(z1, . . . , zn+1)

(the existence of G1 and G2 follows from Theorems 5 and 12, respectively, and
G3 can be set, e.g., to the arithmetic average of G1 and G2).
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Similarly to Corollary 7, we can adapt Corollary 13 to p-predictors.

Corollary 14. Let B : Z ↪→ Y be a Markov kernel and let δ ∈ (0, 1). For each
randomness p-predictor P there exists a conformal p-predictor P ′ such that

G(z1, . . . , zn, zn+1) :=

√
δ

e

∫ √
P ′(z1, . . . , zn, (xn+1, y))

P 1−δ(z1, . . . , zn, (xn+1, y))
B(dy | zn+1) (33)

is a randomness e-variable.

The interpretation of (33) is similar to that of (9): P ′(z1, . . . , zn, (xn+1, y))
is typically small when P (z1, . . . , zn, (xn+1, y)) is small. Instead of (10) we will
have √

δ

e

√
P ′(z1, . . . , zn, (xn+1, y))

P 1−δ(z1, . . . , zn, (xn+1, y))
<

1

ϵ1ϵ2
,

which can be rewritten as

P ′(z1, . . . , zn, (xn+1, y)) <
e

δϵ21ϵ
2
2

P 1−δ(z1, . . . , zn, (xn+1, y))

in place of (11).

Proof of Corollary 14. We proceed as in the proof of Corollary 7 except for
replacing (6) by (32).

B.4 Applications to classification

As compared with Sect. 4, we get similar but weaker performance guarantees for
the derived conformal predictors without accepting the train-invariance princi-
ple. In the binary case Y = {−1, 1}, we apply (32) to obtain

G(z1, . . . , zn, zn+1) := e−1/2

√
E(z1, . . . , zn, (xn+1,−yn+1))

EtX(z1, . . . , zn, (xn+1,−yn+1))

in place of (7). This implies (8) with EtX in place of EX and ϵ2 in place of ϵ.
Instead of (12) now we have

G(z1, . . . , zn, zn+1) :=
e−1/2

|Y| − 1

∑
y∈Y\{yn+1}

√
E(z1, . . . , zn, (xn+1, y))

EtX(z1, . . . , zn, (xn+1, y))
,

and instead of (14) we have

∀y ∈ Y\{yn+1} : EtX(z1, . . . , zn, (xn+1, y)) >
e−1ϵ2

(|Y| − 1)2
E(z1, . . . , zn, (xn+1, y)).
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