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Abstract

This paper introduces inductive randomness predictors, which form a proper
superset of inductive conformal predictors but have the same principal property
of validity under the assumption of randomness (i.e., of IID data). It turns out
that every non-trivial inductive conformal predictor is strictly dominated by
an inductive randomness predictor, although the improvement is not great, at
most a factor of e ≈ 2.72 in the case of e-prediction. The dominating inductive
randomness predictors are more complicated and more difficult to compute;
besides, an improvement by a factor of e is rare. Therefore, this paper does
not suggest replacing inductive conformal predictors by inductive randomness
predictors and only calls for a more detailed study of the latter.

Contents

1 Introduction 1

2 Inductive conformal and randomness predictors 3

3 Binary inductive randomness predictors 5

4 Inadmissibility of inductive conformal predictors 11

5 Separation inductive randomness predictors 12

6 Ternary IRPs 16

7 General discrete IRPs 20

8 Conclusion 21

References 22

A Proofs and complements 23



1 Introduction

The assumption of randomness (i.e., the observations being IID, independent
and identically distributed) is the fundamental one in mainstream machine
learning. Conformal predictors, in their basic form considered in this paper,
are guaranteed to satisfy a property of validity under randomness, but they
do not require randomness in order to be valid: e.g., they remain valid if the
assumption of randomness is weakened to that of exchangeability. A natural
question is whether we can improve on conformal predictors by using the as-
sumption of randomness more fully. The purpose of this paper is to show that
some improvement is possible, although it is unclear whether the improvement
can be usefully exploited in practice.

The first paper exploring this question was Nouretdinov et al. (2003), whose
conclusion was that only a limited improvement is possible. However, the setting
of Nouretdinov et al. (2003) was the algorithmic theory of randomness, and
so their results involved unspecified constants. A limited improvement might
consist in improving conformal p-values by a constant factor, which ceases to
be limited in practice if the factor is large enough.

Results developing those of Nouretdinov et al. (2003) and not involving un-
specified constants were obtained in Vovk (2025b). The latter paper intro-
duced “randomness predictors”, the most general predictors enjoying the same
property of validity as conformal predictors under the assumption of random-
ness. In fact, the definition of randomness predictors is trivial: it is just a
straightforward application of the definition of p-values. Similarly to conformal
e-predictors (Vovk, 2025a), the paper Vovk (2025b) also introduced “random-
ness e-predictors”, based on e-values instead of p-values. Since both conformal
and randomness predictors are valid under the assumption of randomness, the
main advantage of randomness prediction, if real, may lie in its efficiency, which
is defined, informally, as the smallness of the p-values, or largeness of e-values,
that it produces for false labels.

Results of Vovk (2025b) (see, e.g., Theorems 5 and 6) say, roughly, that each
randomness e-predictor can be turned into a conformal e-predictor that loses in
efficiency by at most a factor of e (the base of natural logarithms, e ≈ 2.72): the
e-values for the false labels may go up at most e-fold on average. In practical
machine learning and statistics, an e-fold improvement might be valuable. A
crude relation between e-values and p-values is that an e-value of e corresponds
to a p-value of 1/e (Vovk and Wang, 2021, Remark 2.3). This suggests that
an improvement by a factor of e of conformal p-values might also be possible.
In this paper we will investigate whether and when we can achieve it in reality.
The answer is that we can but, under our current definitions, not often.

The most popular kind of conformal predictors is inductive conformal pre-
dictors (ICPs). They split the training set of size n into two parts: a proper
training set of size l and a calibration set of size m, where l + m = n. The
main advantage of ICPs is that they can be used on top of generic point predic-
tors (such as neural networks) without prohibitive computational costs, whereas
full conformal prediction is computationally efficient only on top of a relatively
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narrow class of point predictors. This paper introduces and studies inductive
randomness predictors (IRPs), which are also computationally efficient (pro-
vided results of some preliminary computations, which only depend on the size
m of the calibration set rather than the actual data, are stored as a table).

A major limitation of conformal predictors, discussed in detail in Vovk et al.
(2009), is that the p-values that they output can never drop below 1

n+1 . Corre-

spondingly, the smallest p-value that can be achieved by an ICP is 1
m+1 . Let us

call it the fundamental limitation of inductive conformal prediction. All specific
IRPs considered in this paper break through this limitation: they are capable
of achieving p-values of 1

e(m+1) . The factor of e is negligible by the standards of

the algorithmic theory of randomness, but substantial by the usual standards
of machine learning and statistics. (In principle, it is easy to overcome the fun-
damental limitation of inductive conformal prediction by using smoothed ICPs
(Vovk et al., 2022, Sect. 4.2.1), but randomization is often considered problem-
atic and avoided in practice.)

We will start the main part of the paper in Sect. 2 from the principal def-
initions, including that of IRPs. Similarly to ICPs, IRPs are defined using
inductive nonconformity measures, but now these take values in a “summary
space” S ⊆ R. The size of the summary space has important implications for the
achievable randomness p-values (i.e., p-values output by inductive randomness
predictors). In Sect. 3 we discuss binary IRPs, corresponding to |S| = 2. This
case leads to the smallest randomness p-values, but on the negative side binary
inductive nonconformity measures may be crude, which will be illustrated on
two examples.

In Sect. 4 we will see that the idea of binary IRPs can be used to demon-
strate the inadmissibility of ICPs, where “inadmissibility” means, according to
the standard usage in statistical decision theory, that for each ICP there exists
an IRP that is never worse and sometimes better than that ICP. The following
section, Sect. 5, shows that ICPs can be improved in a much stronger sense. It
allows the summary space S to be the real line or its infinite subset, and it intro-
duces a class of IRPs which we call “separation IRPs”. Informally, separation
IRPs are obtained by combining inductive conformal prediction with repeated
application of binary inductive randomness prediction. Each non-trivial ICP is
strictly dominated by a corresponding IRP; moreover, in typical cases a sepa-
ration IRP based on an inductive nonconformity measure A produces a p-value
that is almost surely better than the p-value produced by the ICP based on
A. Besides, similarly to the binary IRPs, the separation IRPs can still achieve
randomness p-values of 1

e(m+1) breaking the fundamental limitation.

However, separation IRPs still have a substantial limitation: in general
(without restrictions on the summary space S), they can achieve a p-value at
best K/(m+1) when the corresponding ICP achieves a p-value of (K+1)/(m+
1); therefore, there can be a significant improvement only for very small values
of K, first of all for K = 0. This motivates the further study of discrete IRPs,
for which |S| < ∞, in the following two sections. In the ternary case |S| = 3,
which is the topic of Sect. 6, we have finer inductive nonconformity measures
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than in the binary case, and the ternary case might be a better contender to be
useful in practice. Section 7 extends these considerations to an arbitrary finite
summary space S. The quaternary case |S| = 4 might be another practically
useful one, along the lines of Vovk et al. (2022, Figure 1.5).

The short Sect. 8 concludes. The proofs are relegated to Appendix A.
Let N0 := {0, 1, . . . } and N1 := {1, 2, . . . } be the two standard sets of natural

numbers.

2 Inductive conformal and randomness predic-
tors

We consider the problem of batch prediction. Given a training sequence
z1, . . . , zn of a given length n, where zi = (xi, yi) (an example) consists of
an object xi ∈ X and a label yi ∈ Y, and also given a test object xn+1 ∈ X,
our task is to predict the label yn+1 of xn+1. The object space X and the label
space Y are non-empty measurable spaces. To exclude trivialities, let us assume
that n ≥ 2 and that the σ-algebra on Y is different from {∅,Y} (i.e., that Y
contains at least two essentially distinct elements).

In the definition of an ICP we will follow Vovk et al. (2022, Sect. 4.2.2).
The training sequence z1, . . . , zn is split into two parts: the proper training
sequence z1, . . . , zl of length l and the calibration sequence zl+1, . . . , zn of length
m := n − l; we will assume l ∈ N1 and m ∈ N1. An inductive nonconformity
measure is a measurable function A : Zl+1 → R, where Z := X × Y is the
example space. The inductive conformal predictor (ICP) based on A outputs
the prediction p-function

f(y) :=
|{j = l + 1, . . . , n+ 1 | αj ≥ αn+1}|

m+ 1
∈
[

1

m+ 1
, 1

]
, y ∈ Y,

where the αs are defined by

αj := A(z1, . . . , zl, zj), j = l + 1, . . . , n,

αn+1 := A(z1, . . . , zl, (xn+1, y)).

We often refer to the values α taken by an inductive nonconformity measure as
nonconformity scores. There are different ways of packaging predictions output
by ICPs (such as prediction sets, briefly discussed after introducing IRPs below).

To define and discuss IRPs, we will need several auxiliary notions. The upper
randomness probability of a measurable set E ⊆ Zn+1 is defined in Vovk et al.
(2022, Sect. 9.1.1) as

PR(E) := sup
Q∈P(Z)

Qn+1(E), (1)

where we use the notation P(Z) for the set of all probability measures on a
measurable set Z. A randomness p-variable on Zn+1 is a measurable function
P : Zn+1 → [0, 1] satisfying

∀ϵ ∈ (0, 1) : PR({P ≤ ϵ}) ≤ ϵ. (2)
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A randomness p-predictor, as defined in Vovk (2025b), is the same thing as a
randomness p-variable. We will see that this terminology is justified after the
definition of the IRPs, which are a subclass of randomness p-predictors, below.

Very slightly generalizing the notion used when defining ICPs, an inductive
nonconformity measure used for IRPs is a measurable function A : Zl+1 → S,
where S is a measurable space which we will call the summary space. We will
assume that S ⊆ R and that S inherits the structures of measurable, topologi-
cal, and linearly ordered space from R (so that it can be argued that the new
definition is not a generalization at all). Similarly to (1), we define the upper
randomness probability of a measurable set E ⊆ Sm+1 as

PR(E) := sup
Q∈P(S)

Qm+1(E).

(Therefore, the notation PR is overloaded, but it should never lead to confusion
in this paper.) An aggregating p-variable P : Sm+1 → [0, 1] is defined to be a
randomness p-variable on Sm+1, meaning that it is required to satisfy (2).

In inductive randomness prediction, the training sequence z1, . . . , zn is still
split into the proper training sequence z1, . . . , zl and the calibration sequence
zl+1, . . . , zn. The inductive randomness predictor (IRP) based on (sometimes
we will say “corresponding to”) an inductive nonconformity measure A and an
aggregating p-variable P is defined to be the randomness p-predictor

IRPA,P (z1, . . . , zn+1) := P (αl+1, . . . , αn+1),

where
αj := A(z1, . . . , zl, zj), j = l + 1, . . . , n+ 1.

Given a training sequence z1, . . . , zn and a test object xn+1, the IRP IRPA,P

outputs the prediction p-function

f(y) = f(y; z1, . . . , zn, xn+1) := IRPA,P (z1, . . . , zn, (xn+1, y)), y ∈ Y. (3)

This function itself can be considered to be the IRP’s prediction for yn+1. Al-
ternatively, we can choose a significance level ϵ > 0 (i.e., our target probability
of error) and output the prediction set

Γϵ := {y ∈ Y | f(y) > ϵ} (4)

as our prediction for yn+1. By the definition of a randomness p-variable, the
probability of error (meaning yn+1 /∈ Γϵ) will not exceed ϵ under the assumption
of randomness.

We will only be interested in IRPs for which their underlying aggregating
p-variable is calibration-invariant, i.e., does not depend on the ordering of its
first m arguments (corresponding to the calibration examples), so we make this
requirement part of the definition. This makes the IRPs themselves independent
of the ordering of the calibration examples.

4



Remark 1. In our analysis of IRPs, we will assume that all n+1 examples under
consideration are IID, although it will be obvious that it is sufficient to assume
that only the calibration and test examples are IID.

ICPs are a special case of IRPs; for them, S = R, and they are based on the
aggregating p-variable

Π(αl+1, . . . , αn+1) :=
|{j = l + 1, . . . , n+ 1 | αj ≥ αn+1}|

m+ 1
,

(αl+1, . . . , αn+1) ∈ Sm+1.

Therefore, we will use the notation IRPA,Π for the ICP based on an inductive
nonconformity measure A.

In statistical hypothesis testing (see, e.g., Cox and Hinkley 1974, Sect. 3.2)
it is customary to define p-variables via “test statistics”, B : Sm+1 → R in our
current context. This notion is insufficient in conformal prediction (Gurevich
and Vovk, 2019), where we need to replace R by a general linearly ordered
measurable space with all initial segments (−∞, r] measurable. Let us call
functions B of this kind nonconformity statistics. Such a function defines the
aggregating p-variable

PB(αl+1, . . . , αn+1) := PR ({B ≥ B(αl+1, . . . , αn, αn+1)}) ,
(αl+1, . . . , αn+1) ∈ Sm+1. (5)

(Intuitively, large values of B indicate nonconformity. We replace the “≥” in
(5) by “≤” when B is referred to as a “conformity statistic”.) This aggregating
p-variable can then be used as an input to an IRP, and then we might say that
this IRP, IRPA,PB

, is based on A (an inductive nonconformity measure) and B.

3 Binary inductive randomness predictors

In this section we will concentrate on binary IRPs, for which the summary space
is S := {0, 1}. Intuitively, a summary of 0 means conformity, and 1 means lack
of conformity. Binary IRPs are simple and even crude; however, they are able
to output smaller p-values than other IRPs considered in this paper.

Binary IRPs will output prediction p-functions of an especially simple kind.
Namely, for them the prediction function (3) will be a hedged prediction set in
the sense of having the form

f(y) =

{
c′ if y ∈ E

c otherwise
(6)

for some E ⊆ Y and c, c′ ∈ [0, 1] with c ≤ c′ (typically c < c′, so that f
identifies E uniquely). We call E the prediction set associated with f , c is the
unconfidence in E (and 1 − c is the confidence), and c′ is the credibility of the
prediction f . (These terms are used similarly to conformal prediction, as in
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Vovk et al. 2022, Sections 3.1.2 and 3.5.1.) We will be mainly interested in
E and c; c reflects our confidence in the prediction set E; the smaller c the
greater our confidence. As always, the expression “prediction interval” will be
applied to prediction sets that happen to be intervals of the real line, and the
corresponding hedged prediction sets will be called hedged prediction intervals.

The nonconformity statistic B used by binary IRPs is

B(αl+1, . . . , αn, αn+1) :=

(
αn+1,−

n∑
i=l+1

αi

)
; (7)

it takes values in R2 equipped with the lexicographic order. Remember that
(α, β) ≤ (α′, β′) in the lexicographic order means that either α < α′ or α = α′

and β ≤ β′. This gives us a linear order (so that every two elements of R2 are
comparable).

Our definition (7) is the most natural choice for the nonconformity statistic:
the nonconformity of a sequence (αl+1, . . . , αn+1) of nonconformity scores is de-
termined by the nonconformity score αn+1 of the test example except that ties
are broken by the total nonconformity score for the calibration sequence. We
will get an equivalent definition if we replace the

∑
in (7) by any other sym-

metric function that is strictly increasing in each of its arguments; remember
that we are only interested in calibration-invariant IRPs. The most noncon-
forming (αl+1, . . . , αn+1) correspond to nonconforming αn+1 and conforming
(αl+1, . . . , αn).

Once we fix the nonconformity statistic (7), a binary IRP is determined
by its inductive nonconformity measure. Informally, there are two kinds of bi-
nary inductive nonconformity measures, which we will call intrinsic and extrin-
sic. Extrinsic ones are obtained from non-binary (usually continuous) inductive
nonconformity measures by thresholding; the nonconformity scores above the
threshold are replaced by 1, while those below are replaced by 0. Intrinsic ones
are defined in some other natural way without need for thresholding at the last
step. There might be intermediate cases, e.g., where the binary inductive non-
conformity measure uses thresholding, but the threshold is defined in a natural
way. Let me give two examples of binary inductive nonconformity measures
illustrating the two kinds. (Two more examples of inductive nonconformity
measures will be given at the end of this section and, as Example 7, in Sect. 5.)

Example 2. Train a decision tree ĝ on the proper training set in such a way
that, when applied to an example z ∈ Z, ĝ outputs either 0 or 1, where 1
is intended to be an indication of the strangeness of z as compared with the
examples in the proper training set. The nonconformity score of a calibration
or test example z is then ĝ(z) (where the test example is the test object plus
a postulated label y). This is an example of an intrinsic binary nonconformity
measure. We can use (7) as nonconformity statistic. The hedged prediction set
for a test object xn+1 will be the set of all labels y such that the nonconformity
score of (xn+1, y) is 0; its unconfidence will be given by Proposition 4 below
(and discussed after the proposition).
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Example 3. Now set Y := {−1, 1}, so that here we are interested in binary
classification. To define the nonconformity score A(z1, . . . , zl, (x, y)), use the
support vector machine (SVM) to find the optimal separating hyperplane and
its margin from z1, . . . , zl as training sequence. Set the nonconformity score
A(z1, . . . , zl, (x, y)) to 1 if x is classified incorrectly (namely, as −y) by the opti-
mal separating hyperplane and x is outside the margin; set A(z1, . . . , zl, (x, y))
to 0 otherwise. A reasonable definition of B is still (7). The prediction set
produced by this IRP for a test object xn+1 will be {ŷ} if xn+1 is outside the
margin, where ŷ is the SVM’s prediction for the label of xn+1. Otherwise (if
xn+1 is inside the margin), the prediction set will be vacuous, {−1, 1}. The
unconfidence of this prediction set will again be given in Proposition 4 below.
This definition may be regarded as extrinsic, although we may argue that the
threshold is natural.

An alternative definition would be to set A(z1, . . . , zl, (x, y)) to 1 if x is a
support vector for the SVM constructed from (z1, . . . , zl, (x, y)) as training se-
quence and to set it to 0 otherwise, as in Gammerman et al. (1998, Sect. 2) (that
paper uses “incertitude” for our “unconfidence”). However, the computational
cost of such an IRP would be prohibitive, since it would require constructing a
new SVM for each test object and each possible label for it. This alternative
definition would be intrinsic.

Binary IRPs, including the IRPs described in Examples 2 and 3, output
prediction sets that do not depend on the calibration sequence. This makes them
inflexible as compared with typical conformal predictors, but on the positive side
they can achieve very low unconfidences.

Let us now derive an expression (not quite explicit) for the p-values output by
binary IRPs based on the nonconformity statistic (7). The following proposition,
to be proved in Sect. A.1, gives the expression, and after its statement we will
discuss ways of using it.

Proposition 4. Suppose that a binary sequence αl+1, . . . , αn contains K 1s
and that αn+1 = 1. Then the nonconformity statistic B defined by (7) leads to
a p-value PB(αl+1, . . . , αn+1) of

IRP1(m,K) := max
p∈[0,1]

K∑
k=0

(
m

k

)
pk+1(1− p)m−k. (8)

Let m → ∞.

• For K = 0, the p-value is

IRP1(m, 0) =
mm

(m+ 1)m+1
∼ exp(−1)

m
≈ 0.37

m
(9)

(and we can replace “∼” by “≤”).

• For K = 1, the p-value is asymptotically equivalent to c/m, where c ∈
[0.83, 0.84].
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Table 1: The p-values (in %) for binary ICP and IRP for m = 19 and the first
few values of K, as described in text.

K 0 1 2 3 4 5 6 7

ICP 5 10 15 20 25 30 35 40
IRP1 1.89 4.35 7.18 10.26 13.57 17.06 20.72 24.55

• For K = 2, the p-value is asymptotically equivalent to c/m, where c ∈
[1.37, 1.38].

• For K = 3, the p-value is asymptotically equivalent to c/m, where c ∈
[1.94, 1.95].

The upper index 1 in our notation IRP1 used for the p-values output by
binary IRPs (as in (8)) refers to L := |S|−1, the number of boundaries between
adjacent summaries (0 and 1 in the binary case).

In the context of Example 2, let us consider a decision tree that outputs 1
(signifying lack of conformity) only rarely, so that we can expect that K = 0.
In this case the prediction set output by the IRP based on this decision tree will
be more confident than the identical prediction set output by the ICP based on
the same inductive nonconformity measure: the unconfidence of the former will
be approximately 0.37/m for large m, whereas the unconfidence of the latter
will be approximately 1/m (the precise value being 1/(m+ 1)).

Even if K = 1, the unconfidence for the IRP is still close to 0.84/m, which
is better than the smallest p-value that can be achieved by any ICP on any
training sequence.

In the context of Example 3, the definition of the nonconformity measure A
was chosen so that K can be expected to be small. In this case the unconfidence
of the IRP will be significantly better than the unconfidence of the ICP based
on the same inductive nonconformity measure.

Table 1 gives the unconfidences produced by the ICP and IRP that are based
on the same binary inductive nonconformity measure and with the IRP based
on the nonconformity statistic (7). We take m := 19, in order for an ICP to be
able to achieve a statistically significant p-value of 5%. The first two entries in
the table, 1.89% and 4.35%, are less than 5% and so overcome the fundamental
limitation of inductive conformal prediction. If the binary nonconformity mea-
sure is intrinsic, as in Example 2 or in the alternative definition in Example 3,
the binary IRP has an obvious significant advantage over the corresponding
ICP, which we may also call binary. If it extrinsic, comparison is more difficult
since it is more natural to consider the conformal p-values produced by the
unthresholded nonconformity measure.

Table 2 is an asymptotic version of Table 1. It gives the numerators of
asymptotic expressions such as those in (9) and in the rest of the itemized list
in Proposition 4, with better accuracy and for a wider range of K. The row
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Table 2: The asymptotic numerators of the unconfidences for binary ICP and
IRP for various values of K, as described in text.

K 0 1 2 3 4 5 6 7

ICP 1 2 3 4 5 6 7 8
IRP1 0.368 0.840 1.371 1.942 2.544 3.168 3.812 4.472
ratio 0.368 0.420 0.457 0.486 0.509 0.528 0.545 0.559

labelled “IRP1” gives the numerator itself, and the row labelled “ratio” gives the
ratio of the numerator for the IRP to the numerator for the ICP. Namely, the
asymptotic unconfidence for the hedged prediction set output by the binary IRP
is aK/m, where aK is given in row “IRP1”, and the asymptotic unconfidence
for the ICP is (K + 1)/m, with the numerator K + 1 given in row “ICP”. Row
“ratio” reports aK/(K+1) showing by how much aK/m is smaller. We can see
that the ratio is substantially less than 1 even for K = 7, in which case we have
4.472/m for the IRP (approximately) and 8/m for the ICP; the growth of the
ratio quickly slows down as K increases.

A specific extrinsic binary IRP

As mentioned earlier, Table 1 directly shows the advantage of IRPs over ICPs
for intrinsic binary inductive nonconformity measures. In practice, however,
we are more likely to encounter a continuous nonconformity measure, as in
the main definition in Example 3. We can still make such a nonconformity
measure binary by thresholding, but we might lose something in the process; in
the context of Example 3 we might be better off directly using the ICP based
on the signed distance from the optimal separating hyperplane divided by the
margin (the sign being + when the object is on the wrong side of the hyperplane)
as nonconformity measure. Let’s see how much we can lose in a much simpler
situation.

Figure 1 shows some statistics for predictions output by an ICP and a bi-
nary IRP in an idealized situation with m = 19. Suppose that, based on the
proper training set, we can define a “residual” ri for each calibration or test
example that we model as distributed as ri ∼ N(0, 1), and then the correspond-
ing nonconformity score can be defined as the absolute value of the residual.
For example, the residual can be defined as the difference ri := yi − ŷi between
the true and predicted labels (where the predicted label is based on the proper
training set), and then the nonconformity score is αi := |ri|. Alternatively, we
can define ri := (yi − ŷi)/σ̂i, where σ̂i is the predicted accuracy of ŷi, with the
same definition of αi via ri. Additionally, we can either transform (yi − ŷi)/σ̂i

monotonically to make its distribution closer to N(0, 1) or replace N(0, 1) by a
different distribution.

To make our inductive nonconformity measure binary, let us set U :=
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Figure 1: The binary IRP (red circles) and ICP (black crosses) as described in
text

Φ−1(0.975) (the 97.5% quantile of the standard Gaussian distribution N(0, 1),
whose CDF is denoted by Φ) and define a new, binary, inductive nonconformity
measure with nonconformity scores α′

i := 1{αi≥U} (so that α′
i = 1 with probabil-

ity 5%). We randomly generate 30 sets of m residuals ri ∼ N(0, 1) (representing
30 datasets of size m = 19) and compute the corresponding prediction intervals
using the ICP and IRP.

Figure 1 shows the lengths (see below) of the prediction intervals output
by the ICP as black crosses and the unconfidences of the prediction intervals
output by the binary IRP as red circles. The length of a prediction interval is
measured “in the α-space”; e.g., it is literally the length when ri := yi− ŷi, and
it is measured in units of σ̂i when ri := (yi − ŷi)/σ̂i. The centre of each black
cross has the unconfidence 5% of the corresponding prediction interval as its
abscissa, and the centre of each red circle has the length 2U of the corresponding
prediction interval as its ordinate. The area of each red circle is proportional
to the number of simulations (out of 30) that leads to that unconfidence (found
from Table 1); therefore, its radius is proportional to the square root of that
number (the precise numbers are: 10 simulations lead to K = 0, 15 simulations
to K = 1, 3 simulations to K = 2, and 2 simulations to K = 3). The number
of black crosses above the 2U level for the IRP is 20 (out of 30).

Figure 2 gives some statistics corresponding to Figure 1, but this time with at
least 1000 simulations (for the left panel we even report the exact probabilities,
namely (

m

k

)
0.05k0.95m−k

for the probability of K = k). The left (resp. right) panel shows that the IRP
usually outputs prediction intervals with better unconfidences (resp. lengths),
even for an extrinsic binary inductive nonconformity measure. The left panel

10
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Figure 2: Details for the same ICP and IRP and the same random data as in
Figure 1 but for ∞ (left) or 1000 (right) simulations. Left panel: the bar chart
for the unconfidences of the prediction intervals output by the IRP. Right panel:
the histogram of the lengths of the prediction intervals output by the ICP.

shows that the probability of the IRP overcoming the fundamental limitation
of inductive conformal prediction is high (it is close to 0.755).

4 Inadmissibility of inductive conformal predic-
tors

Let us say that an IRP P1 dominates an IRP P2 if P1 ≤ P2 (the p-value
output by P1 never exceeds the p-value output by P2 on the same data). The
domination is strict if, in addition, P1(z1, . . . , zn+1) < P2(z1, . . . , zn+1) for some
data sequence z1, . . . , zn+1.

An equivalent way to express domination of P2 by P1 is to say that, at each
significance level, the prediction set output by P1 is a subset of (intuitively, is
at least as precise as) the prediction set output by P2. Strict domination means
that sometimes the prediction set output by P1 is more precise. An IRP (in
particular, an ICP) is inadmissible if it is strictly dominated by another IRP.
This is a special case of the standard notion of inadmissibility in statistics.

Proposition 5. Any inductive conformal predictor is inadmissible.

The idea behind the proof of Proposition 5 given in Sect. A.2 is that we can
improve any ICP IRPA,Π by splitting the summary space S in two parts and
then boosting IRPA,Π by combining it with the binary IRP determined by those
two parts. In the next section we will see that ICPs are also inadmissible in a
much stronger sense.
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5 Separation inductive randomness predictors

In this section we will adapt the idea of binary IRP to the case of a general
summary space S including that of an interval of the real line (perhaps infinite
in both directions, R, or in one direction, such as [c,∞) or (−∞, c] for some
c ∈ R). We will consider various ways to split S in two parts and thus reduce
our prediction problem to a series of binary cases. Our results will be easiest
to interpret if the reader assumes that S is an interval of the real line and the
distribution of nonconformity scores A(z1, . . . , zl, Z) (where Z ∼ Q and Qn+1

is the data-generating distribution) is continuous; in any case, this is what we
will assume in Proposition 6 and informal discussions.

A separation IRP is determined by an inductive nonconformity measure A
and a 2D array (threshold array) (cK,I), K ∈ {0, . . . ,m− 1} and I ∈ N1, of real
numbers in S. We are particularly interested in the case where the threshold
array (cK,I) is dense for each K ∈ {0, . . . ,m− 1}: for each pair s1, s2 ∈ S such
that s1 < s2 there exists I such that s1 < cK,I < s2. Let us say that c ∈ S
K-separates the test nonconformity score (from the calibration nonconformity
scores) if the test nonconformity score and exactly K calibration nonconformity
scores are above c. The separation aggregating p-variable based on the threshold
array (cK,I) is defined to be the aggregating p-variable based on the conformity
statistic

B(αl+1, . . . , αn+1) := (K, I), (10)

where K := |{i ∈ {l + 1, . . . , n} | αi ≥ αn+1}| and I is the smallest index such
that cK,I K-separates the test nonconformity score; we set I := ∞ if such an
index does not exist (it will usually exist if K < m and the threshold array is
dense). As usual, the order on the possible pairs (K, I) is lexicographic. The
IRP based on the inductive nonconformity measure A and the separation ag-
gregating p-variable based on the threshold array (cK,I) will be said to be the
ideal separation IRP based on A and (cK,I). Remember that the next propo-
sition assumes that the summary space is an interval and the distribution of
nonconformity scores is continuous.

Proposition 6. The p-value output by the ideal separation IRP based on an
inductive nonconformity measure A and a threshold array (cK,I) is at most

IRP∞(m,K, I) :=
K

m+ 1
+ max

(p0,...,pI)∈∆I

I∑
i=1

K∑
k=0

m!

(m−K)!(k + 1)!(K − k)!

(i−1∑
j=0

pj

)m−K

pk+1
i

( I∑
j=i+1

pj

)K−k

,

K ∈ {0, . . . ,m− 1}, I ∈ N1, (11)

where K and I are as defined in (10) and ∆I is the standard I-simplex

∆I :=
{
(p0, . . . , pI) ∈ [0,∞)I+1 | p0 + · · ·+ pI = 1

}
.

If I = ∞, the expression in (11) is understood to be IRP∞(m,K, I) := (K +
1)/(m+ 1).
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Table 3: Some p-values IRP∞(m,K, I) for m = 9, K = 0, 1, 2 (corresponding
to the conformal p-values of 10%, 20%, 30%, respectively), and I = 1, . . . , 7.

I 1 2 3 4 5 6 7

K = 0 3.87% 5.53% 6.46% 7.07% 7.49% 7.81% 8.05%
K = 1 13.02% 14.59% 15.56% 16.23% 16.72% 17.10% 19.74%
K = 2 22.67% 24.17% 25.14% 25.83% 26.34% 26.74% 29.70%

See Sect. A.3 for a proof of Proposition 6. Let us define a separation IRP as
predictor that, under the assumptions of Proposition 6, outputs IRP∞(m,K, I)
as its p-values for some A and (cK,I) (on which it is based). The upper index
∞ in IRP∞(m,K, I) refers to the infinite size of the summary space. In the fol-
lowing two sections, we will consider IRPs with finite S based on the separation
aggregating p-variable (10), which we will also refer to as separation IRPs.

The word “above” in the definition of separation IRPs can be either inclusive
or exclusive, so that “αi is above cK,I” may mean either αi > cK,I or αi ≥ cK,I .
(More generally, we may even replace the 2D array of numbers by a 2D array
of closed rays in R that can be unbounded either on the right or on the left.)
For concreteness, let us use the latter meaning. Then “αi is below cK,I” means
αi < cK,I .

The expression 00 in (11) is treated as 1. Therefore, the term in the sum∑I
i=1 corresponding to i = I only contains the term corresponding to k = K in

the sum
∑K

k=0, in which the factor (. . . )K−k can be ignored.
Table 3 shows the p-values (11) that separation IRPs produce for a calibra-

tion sequence of length m := 9 when the conformal p-value takes its smallest
values 10%, 20%, or 30%. (We set m := 19 only for the simpler binary and,
later, ternary IRPs because results of computations are much less stable for
m = 19 as compared with smaller m such as 9.) In the case where the confor-
mal p-value takes its smallest value 1/(m+1), I is the smallest index such that
all calibration nonconformity scores are below c0,I and the test nonconformity
score is above c0,I , and the separation IRP p-value (11) can then be written as

IRP∞(m, 0, I) = max
(p0,...,pI)∈∆I

I∑
i=1

(i−1∑
j=0

pj

)m

pi. (12)

The smallest possible p-value for separation IRPs corresponds to I = 1 and
is 3.87%. All p-values in the table are below the corresponding conformal p-
values, and later we will see that each separation IRP strictly dominates the
corresponding ICP.

To see how separation IRPs could be used for prediction, we will use a
very simple and standard inductive nonconformity measure (Vovk et al., 2022,
(4.16)).
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Example 7. Consider the problem of regression, Y := R. Train a regres-
sion model ĝ : X → R (such as a neural network) on z1, . . . , zl as training
sequence. Use A(z1, . . . , zl, (x, y)) := |y − ĝ(x)| as nonconformity measure, and
set S := [0,∞). Let αi := |yi − ĝ(xi)|, i = l + 1, . . . , n, be the (i− l)th calibra-
tion nonconformity score. Arrange these nonconformity scores in the ascending
order, α(1) ≤ · · · ≤ α(m). Set ŷn+1 := ĝ(xn+1). These are the prediction inter-
vals Γϵ (see (4)) output by the separation IRP based on a threshold array (cK,I)
in S:

1. First, we have the conformal prediction intervals:

Γ
K+1
m+1 =

[
ŷn+1 − α(m−K), ŷn+1 + α(m−K)

]
.

2. Let I0,1 be the smallest value of I such that c0,I ∈ (α(m),∞). (Such a value
of I, here and later in this list, will exist under the density requirement
for the threshold array.) Then the longest non-trivial prediction interval
is

ΓIRP∞(m,0,I0,1) =
(
ŷn+1 − c0,I0,1 , ŷn+1 + c0,I0,1

)
.

3. For j = 2, 3, . . . , let I0,j be the smallest value of I such that c0,I ∈
(α(m), c0,I0,j−1

). Then the following prediction intervals are

ΓIRP∞(m,0,I0,j) =
(
ŷn+1 − c0,I0,j , ŷn+1 + c0,I0,j

)
.

This is an inductive definition in j. If the required value I does not exist in
any of the items 2–5, the corresponding prediction interval ΓIRP∞(m,K,IK,j)

and any ΓIRP∞(m,K,IK,j′ ) for j′ > j are undefined at this stage (they will
be defined in item 6 below).

4. For K = 1, . . . ,m− 1, let IK,1 be the smallest value of I such that cK,I ∈
(α(m−K), α(m−K+1)). Then

ΓIRP∞(m,K,IK,1) =
(
ŷn+1 − cK,IK,1

, ŷn+1 + cK,IK,1

)
.

5. Finally, forK = 1, . . . ,m−1 and j = 2, 3, . . . , let IK,j be the smallest value
of I such that cK,I ∈ (α(m−K), cK,IK,j−1

). Then the remaining prediction
intervals of this type are

ΓIRP∞(m,K,IK,j) =
(
ŷn+1 − cK,IK,j

, ŷn+1 + cK,IK,j

)
.

6. For an arbitrary given ϵ > 0, define Γϵ as the intersection of all Γϵ′ , ϵ′ ≤ ϵ,
defined in the previous items, 1–5.

In the context of Example 7, informal design principles for the threshold
array (cK,I) are: we would like c0,I to be situated right above the typical values
of the largest calibration nonconformity score α(m); we would like cK,I , K =
1, 2, . . . , to be situated mostly inside a typical interval (α(m−K), α(m−K+1)) and
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closer to α(m−K) for small I. To calculate the likely intervals (α(m),∞) and
(α(m−K), α(m−K+1)) we may use the proper training sequence.

To apply a separation IRP predictor, we need the function IRP∞ of three
variables, m, K, and I, defined by (11). Hopefully, for sizeable m the depen-
dence on m will be very predictable; we find a few asymptotic expressions in
the following proposition. If separation IRPs are ever used in practice, it makes
sense to make the sequence cK,1, cK,2, . . . finite and short for each K. We can
say least about the dependence on K.

Proposition 8. The function IRP∞(m,K, I) defined by (11) is increasing in
(K, I) (in the sense of the lexicographic order),

IRP∞(m,K, I) ∈
(

K

m+ 1
,
K + 1

m+ 1

]
, and (13)

IRP∞(m, 0, 2) ∼ exp(e−1 − 1)

m
≈ 0.531

m
as m → ∞. (14)

The value IRP∞(m, 0, 1) = IRP1(m, 0) is given by (9). Since IRP∞(m,K, I) is
increasing in (K, I), it is also increasing in K and I separately. The approxima-
tion 0.531 in (14) roughly agrees with the value 5.53% given in Table 3 (when
m = 19, that value becomes 5.42%, and so the agreement becomes better). See
Sect. A.4 for a proof of Proposition 8.

Now let us state formally that the separation IRP based on an inductive
nonconformity measure A dominates the ICP based on A as corollary of Propo-
sition 8. It is then obvious than the domination is usually strict, which once
again demonstrates the inadmissibility of typical ICPs.

Corollary 9. Let A be an inductive nonconformity measure. The separation
IRP based on A dominates the ICP based on A.

Proof. The statement of the corollary follows from (13).

However, even separation IRPs are typically inadmissible and strictly domi-
nated by a calibration-invariant IRP. Indeed, take any separation IRP and any
sequence αl+1, . . . , αn+1 of distinct nonconformity scores such that αn+1 is the
largest number in this sequence and c0,1 separates it from the calibration non-
conformity scores. The maximum power probability Qm+1, where Q ∈ P(Z),
of the set{

(απ(l+1), . . . , απ(n), αn+1) | π ∈ Sym({l + 1, . . . , n})
}
⊆ Sm+1 (15)

(Sym({l+1, . . . , n}) being the family of all permutations of the set {l+1, . . . , n})
is

m!

(m+ 1)m+1
∼
√
2π/m e−m−1,

which is much smaller, for a large m, than the smallest p-value attainable by
a separation IRP. Therefore, we can improve the given separation IRP by re-
defining the p-value on the set (15).
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Figure 3: Example of nested prediction sets (casual prediction in dark grey and
confident prediction in light grey).

Remark 10. The non-trivial second addend in the function (11) is defined as the
maximum of a homogenous polynomial of degree m + 1 over the unit simplex
∆I . This polynomial is not convex in general, as can be seen by differentiating
the polynomial p20p1 that is maximized in IRP∞(2, 0, 1) (for simplicity, replace
p1 by 1− p0). Despite the lack of convexity, this is a well-studied problem. The
problem is NP-complete already for quadratic polynomials, but there are PTAS
(polynomial-time approximation schemes) for a fixed m. (See de Klerk et al.
2006, 2015, 2017.)

6 Ternary IRPs

Let us call IRP∞(m,K,∞) the complete p-value output by the separation IRP.
A major weakness of the separation IRPs is that the complete p-values are just
the conformal p-values. Another manifestation of this weakness is the limitation
mentioned in Sect. 1: the best p-value that a separation IRP can achieve is
K/(m+1) when the corresponding ICP achieves a p-value of (K + 1)/(m+ 1);
this can be seen directly from (11). Making the summary space finite removes
this limitation.

In this section we discuss ternary IPRs, which correspond to S of size 3. This
case is in the spirit of Vovk et al. (2022, Figure 1.5), which corresponds to the
quaternary case; a simplified ternary version is shown as Figure 3. A ternary
IRP is defined as separation IRP with |S| = 3, and we will set S := {0, 1, 2}
(this particular choice does not restrict generality). The threshold array (cK,I)
for it is such that cK,1, cK,2 ∈ {0.5, 1.5} and cK,1 ̸= cK,2 for all K; the values of
cK,I for I > 2 will be irrelevant, and it will be convenient to regard I to be 1
or 2. In our experiments we will set

cK,1 :=

{
1.5 if K < K∗

0.5 otherwise;
(16)

intuitively, when K is smaller (K < K∗), we aim for a much smaller p-value
and expect αn+1 = 2.

The following proposition gives the p-values output in the ternary case S =
{0, 1, 2} by the separation aggregating p-variable PB , where B is defined by
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Table 4: The p-values (in %) for the ternary IRP, m = 19, and K = 0, . . . , 7, as
explained in text. The value of cK,1 is given as the lower index of IRP2.

K 0 1 2 3 4 5 6 7

IRP2
1.5(19,K, 1) 1.89 4.73 8.06 11.70 15.56 19.59 23.76 28.07

IRP2
0.5(19,K, 1) 1.89 4.89 8.36 12.11 16.07 20.19 24.45 28.84

IRP2(19,K, 2) 2.71 6.01 9.64 13.49 17.52 21.69 25.99 30.40

(10). It uses the notation

IRP2(m,K, I) := PR(B ≤ (K, I)), (17)

the possible values for I being 1 and 2. As before, the upper index in (17) is
L := |S| − 1. We will refer to IRP2(m,K, 2) as complete p-values.

Proposition 11. The complete p-values of the ternary IRPs are

IRP2(m,K, 2) = max
(p0,p1,p2)∈∆2

K∑
k=0

(
m

k

)(
(p0 + p1)

m−kpk+1
2 + pm−k

0 (p1 + p2)
kp1
)
. (18)

If cK,1 = 1.5,

IRP2(m,K, 1) = max
(p0,p1,p2)∈∆2(

K−1∑
k=0

(
m

k

)(
(p0 + p1)

m−kpk+1
2 + pm−k

0 (p1 + p2)
kp1
)

+

(
m

K

)
(p0 + p1)

m−KpK+1
2

)
. (19)

And if cK,1 = 0.5,

IRP2(m,K, 1) = max
(p0,p1,p2)∈∆2(

K−1∑
k=0

(
m

k

)(
(p0 + p1)

m−kpk+1
2 + pm−k

0 (p1 + p2)
kp1
)

+

(
m

K

)
pm−K
0 (p1 + p2)

Kp1 +

(
m

K

)
pm−K
0 pK+1

2

)
. (20)

For a proof, see Sect. A.5. Table 4 gives some numerical values for ternary
IRPs and m := 19. (For the corresponding values for the ICP and binary IRP,
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Figure 4: The ternary IRP (red and yellow circles) and ICP (black and blue
crosses) as described in text

see Table 1.) To apply these values, we need to decide on the values of cK,1.
Finding (K, I) as in (10), we select the corresponding p-value from:

• the first row of the table if I = 1 and cK,1 = 1.5;

• the second row of the table if I = 1 and cK,1 = 0.5;

• the third row of the table if I = 2.

The bold entries in Table 4 correspond to the threshold array (16) for K∗ := 5
(to be used in our experiment later in this section).

As in the binary case, a ternary IRP based on an intrinsic inductive noncon-
formity measure clearly dominates the corresponding ICP; even the complete
p-values (those in the third row of Table 4) are significantly better than the
conformal p-values 0.05(K + 1).

Remark 12. Ternary IRPs as defined in this section are still inadmissible, since
we can break extra ties as compared with (17) if we use (K, I, J) (with lexico-
graphic order) as conformity statistic, where J := |{i ∈ {l + 1, . . . , n} | αi = 2}|.

Specific extrinsic ternary IRP

Now let us discuss in detail a specific ternary IRP for an extrinsic inductive
nonconformity measure, comparing it with the corresponding ICP. (Similarly to
what we did for binary IRPs in Sect. 3.) Set m := 19 again, and we will again
use nonconformity scores αi := |ri| modelled as N(0, 1). As in Table 4, we set
K∗ := 5 (although the figure summarizing our results will depend little on the
choice of K∗).

18



1.89 4.73 8.06 11.70 15.56 20.19 24.45
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
5% boundary

2.71 6.01 9.64 13.49 17.52 21.69 25.99 30.40 34.93 39.56
0.00

0.05

0.10

0.15

0.20
20% boundary

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

50

100

150

200

250
IRP length

Figure 5: The analogue of Figure 2 for the ICP and ternary IRP of Figure 4.
Left panel: the bar chart for the unconfidences of the confident prediction in-
tervals output by the IRP. Middle panel: the analogous bar chart for the casual
prediction intervals. Right panel: the histogram of the lengths of the prediction
intervals output by the ICP at 20%.

In the ternary case, we use two thresholds for the nonconformity scores,
which correspond to our convention for casual and confident predictions in the
terminology of Vovk et al. (2022, Figure 1.5) (confident predictions making
an error with probability around 5% and casual predictions making an error
with probability around 20%). The thresholds are chosen in such a way that a
random test nonconformity score is confidently rejected with probability close
to 5%, is casually (but not confidently) rejected with probability close to 15%,
and is not rejected at all with probability close to 80%. (The validity of the
p-values produced by our IRP does not depend on this informal requirement.)
Namely, we set U := Φ−1(0.975) (as in the binary case) and U ′ := Φ−1(0.9).
The ternary inductive nonconformity measure produces nonconformity scores

α′
i :=


2 if αi ≥ U

1 if U ′ ≤ αi < U

0 if αi < U ′.

(21)

Figure 4 is the analogue of Figure 1 for ternary IRPs with the switch-over K
equal to K∗ = 5. The crosses give the lengths of the prediction intervals pro-
duced by the ICP based on the original inductive nonconformity measure; the
significance level can be read off the horizontal axis as 5% (for the black crosses)
or 20% (for the blue crosses). In both cases the lengths are variable as they corre-
spond to different calibration sequences. The red circles correspond to confident
prediction intervals output by the ternary IRP based on (21), and the yellow
circles correspond to casual prediction intervals output by those ternary IRP.
The lengths of confident prediction intervals are always 2U , since they reject
the test labels leading to α′

n+1 = 2; similarly, the lengths of casual prediction
intervals are always 2U ′. What is variable is their unconfidences, defined as c
in (6) and taken from Table 4.

Figure 5 is analogous to Figure 2, and its three panels are described in its
caption. The bar chart in the left panel is identical to the one in the left panel
of Figure 2 apart from the labels on the horizontal axis. There is no need to
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complement that panel by the histogram for 5%, since we already have it in
Figure 2 (right panel). We can see that the ternary IRP is competitive with the
ICP even for this extrinsic inductive nonconformity measure.

7 General discrete IRPs

In this section we consider the general case of a finite S assuming, without loss
of generality, S = {0, . . . , L} for L ∈ N1. Then, again without loss of generality,
cK,I , I = 1, . . . , L, are all different and take values in {0.5, 1.5, . . . , L − 0.5}.
Define IRPL(m,K, I) by (17) with L in place of 2. The complete p-values in
this context are those, IRPL(m,K,L), corresponding to I = L. The following
proposition, to be proved in Sect. A.6, only covers the complete p-values; the
other p-values very much depend on the choice of the threshold array.

Proposition 13. The formula for the complete p-values is

IRPL(m,K,L) = max
(p0,...,pL)∈∆L

K∑
k=0

(
m

k

) L∑
J=1

J−1∑
j=0

pj

m−k

pJ

 L∑
j=J

pj

k

.

(22)
For arbitrary but fixed L and K and for m → ∞, the optimal p-value (22)
is asymptotically equivalent to C/m, where C is the value of the optimization
problem

L∑
J=1

cJ

K∑
k=0

1

k!
exp

−
L∑

j=J

cj

 L∑
j=J

cj

k

→ max (23)

whose variables c1, . . . , cL range over [0,∞).

Notice that the sum
∑K

k=0 in (23) is the value at K of the CDF of the

Poisson distribution with parameter
∑L

j=J cj .
In the binary case L = 1 the optimization problem (23) becomes

K∑
k=0

1

k!
exp(−c)ck+1 → max .

Setting the derivative in c to 0 and simplifying leads to the equation

K∑
k=0

ck

k!
=

cK+1

K!
(24)

for the optimal value of c, and this equation will be used in Sect. A.1 to derive
most of the asymptotic expressions in Proposition 4.

Table 5 gives non-asymptotic p-values, namely for m := 9. The first column
of the table (3.87, 9.05, 15.10) is the analogue of the corresponding entries (1.89,
4.35, 7.18) in Table 1 for a smaller m (9 instead of 19). Similarly, the second
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Table 5: The p-values for IRPL in % for m = 9, range of L, and three values of
K.

L 1 2 3 4 5 6 7 100

K = 0 3.87 5.53 6.46 7.07 7.49 7.81 8.05 9.83
K = 1 9.05 12.37 14.13 15.22 15.96 16.51 16.92 19.74
K = 2 15.10 20.01 22.46 23.94 24.93 25.64 26.18 29.69

Table 6: The asymptotic numerators in the p-values for IRPL for a range of L,
and three values of K, as in Table 5.

L 1 2 3 4 5 6 7 8

K = 0 0.368 0.531 0.626 0.688 0.732 0.765 0.790 0.811
K = 1 0.840 1.171 1.352 1.467 1.547 1.606 1.651 1.686
K = 2 1.371 1.866 2.126 2.288 2.398 2.479 2.540 2.588

column of the table (5.53, 12.37, 20.01) is the analogue of the corresponding
entries (2.71, 6.01, 9.64) in Table 4 for a smaller m.

Table 6 gives the asymptotic numerators according to (23). Its first column
agrees with the corresponding entries in Table 2.

8 Conclusion

In this paper we have defined IRPs and started their study. Whereas ICPs are
inadmissible and are dominated by separation IRPs, it remains unclear whether
separation IRPs, or other IRPs different from ICPs, can be useful in practice.

Substantial domination of the separation IRPs constructed in this paper
over ICPs happens only for very small conformal p-values (first of all, for 1

m+1 ).

As the conformal p-value increases (relative to 1
m+1 , even if it is very small

by itself), separation IRPs quickly become almost indistinguishable from ICPs.
The negative results about randomness predictors reported in Vovk (2025b)
carry over to IRPs, but they do not explain this phenomenon. Can we either
strengthen those results or construct better IRPs?

As alluded to in Sect. 1, this paper is part of a wider research programme,
that of investigating the family of the IRPs that are not ICPs, in particular
establishing its size and usefulness in practice. The existing results suggest-
ing that conformal predictors are almost as efficient as randomness predictors
(namely, the results of Nouretdinov et al. 2003 and Vovk 2025b) connect con-
formal predictors and randomness predictors via e-predictors, which are based
on e-values rather than p-values. This suggests another direction of research:
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designing (inductive) randomness e-predictors that are more efficient than any
(inductive) conformal e-predictors. Besides, efficiency in the sense of producing
small p-values is not the only desideratum in confidence prediction; it would be
interesting to investigate conditionality properties (in various senses; cf. Vovk
et al. 2022, Sect. 1.4.4 and Figure 4.8) of IRPs.

Finally, we should not forget the advantages of conformal predictors that
are completely lost in non-conformal randomness prediction; one of them is the
independence of errors in the online mode of prediction, which leads to the
possibility of conformal testing.
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Takimoto, editors, Proceedings of the Fourteenth International Conference
on Algorithmic Learning Theory, volume 2842 of Lecture Notes in Artificial
Intelligence, pages 283–297, Berlin, 2003. Springer.

Albert N. Shiryaev. Probability-1. Springer, New York, third edition, 2016.

22



Vladimir Vovk. Conformal e-prediction. Pattern Recognition, 166:111674, 2025a.
Special Issue on Conformal Prediction and Distribution-Free Uncertainty
Quantification.

Vladimir Vovk. Universality of conformal prediction under the assumption of
randomness. Technical Report arXiv:2502.19254 [cs.LG], arXiv.org e-Print
archive, June 2025b.

Vladimir Vovk and Ruodu Wang. E-values: Calibration, combination, and
applications. Annals of Statistics, 49:1736–1754, 2021.

Vladimir Vovk, Ilia Nouretdinov, and Alex Gammerman. On-line predictive
linear regression. Annals of Statistics, 37:1566–1590, 2009.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic Learn-
ing in a Random World. Springer, Cham, second edition, 2022.

Xiaoshen Wang. A simple proof of Descartes’s rule of signs. American Mathe-
matical Monthly, 111:525–526, 2017.

A Proofs and complements

A.1 Proof of and complements to Proposition 4

The following proposition complements the statement of Proposition 4.

Proposition 4′. For an arbitrary but fixed K and m → ∞, the optimal value of
p in (8) is asymptotically equivalent to c/m, where c is the unique positive root
of the polynomial equation (24). The p-value (8) is asymptotically equivalent to

K∑
k=0

ck+1e−c

k!m
=

cK+2e−c

K!m
. (25)

A non-asymptotic statement for the difference between (8) and (25) is

IRP1(m,K) ≥ cK+2e−c

K!m
− c2(2 ∧ c)m−2. (26)

In addition to (9),

• for K = 1, the p-value is asymptotically equivalent (as m → ∞) to

(ϕ+ ϕ2) exp(−ϕ)

m
=

ϕ3 exp(−ϕ)

m
≈ 0.84

m
, (27)

where ϕ := (1 +
√
5)/2 ≈ 1.62 is the golden ratio,
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• for K = 2, the p-value is asymptotically equivalent to

(c4/2) exp(−c)

m
≈ 1.37

m
, (28)

where

c :=
1 + (37− 3

√
114)1/3 + (37 + 3

√
114)1/3

3
≈ 2.27,

• and for K = 3, the p-value is asymptotically equivalent to

(c5/6) exp(−c)

m
≈ 1.94

m
, (29)

where

c :=
1

4
+

1

4

(
4(
√
778− 7)1/3 − 36(

√
778− 7)−1/3 + 9

)1/2
+

1

2

(
−(

√
778− 7)1/3 + 9(

√
778− 7)−1/3 +

9

2

+
61

2
√
4(
√
778− 7)1/3 − 36(

√
778− 7)−1/3 + 9

)1/2

≈ 2.94.

Let us now prove Propositions 4 and 4′. We can assume, without loss of gen-
erality, that K < m in Proposition 4 (otherwise the statement of the proposition
is trivial), and this assumption then implies that the inductive nonconformity
measure A is a surjection. Let Bp be the Bernoulli probability measure on {0, 1}
with parameter p ∈ [0, 1]: Bp({1}) = p. Since the sequence αl+1, . . . , αn+1 is
IID, the p-value is the largest probability under Bm+1

p of the event of observ-
ing at most K 1s among αl+1, . . . , αn and observing αn+1 = 1. This gives the
expression (8).

When K = 0, maxp p(1 − p)m is attained at p = 1
m+1 , which leads to (9).

The inequality
mm

(m+ 1)m+1
≤ exp(−1)

m
(30)

is equivalent to (
1− 1

m+ 1

)m+1

≤ exp(−1)

and is easy to check.
When K = 1, solving the optimization problem

p(1− p)m +mp2(1− p)m−1 → max (31)

leads to a quadratic equation with the solution in [0, 1] equal to

m− 2 +
√
5m2 − 4m

2(m2 − 1)
∼ ϕ

m
.
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Plugging this into the objective function (31) gives (27).
Now let us deal with an arbitrary (but fixed) K and let m → ∞. The

optimal value of p in (8) will be of the form p ∼ c/m for a constant c (as we
will see later in the proof). Plugging p ∼ c/m into the expression following
maxp∈[0,1] in (8), we can see that this expression is asymptotically equivalent
to the left-hand side of (25). Setting the derivative in c of the left hand-side of
(25) to 0, we can check directly, as we did in Sect. 7, that the optimal c satisfies
the equation (24). That equation has a unique positive root by Descartes’s rule
of signs (see, e.g., Wang 2017). The uniqueness of a positive root implies that
the left-hand side of (25) attains its maximum at the root. The equality in (25)
follows from (24). This gives the left-hand sides of (28) and (29) for K = 2 and
K = 3. In these cases, we obtain cubic and quartic equations for c, respectively,
and their solutions are given in the statement of Proposition 4′.

To obtain the non-asymptotic statement (26), it suffices to set p := c/m in
the expression being maximized in (8) and then to apply Prokhorov’s bound
2c(2∧ c)/m (Shiryaev, 2016, Sect. 3.12) on the total variation distance between
the binomial distribution with parameters (m, c/m) and the Poisson distribution
with parameter c.

A.2 Proof of Proposition 5

Let A be an inductive nonconformity measure; let us check that we can improve
on the corresponding ICP IRPA,Π and define an IRP IRPA,P strictly dominat-
ing IRPA,Π. If A takes only one value, IRPA,Π always outputs 1 and so is clearly
inadmissible (being strictly dominated by the ICP based on any inductive non-
conformity measure taking at least two distinct values). So let us assume that
A takes at least two distinct values, choose arbitrarily a ∈ (inf A, supA), and
define P as

P (αl+1, . . . , αn+1) :={
mm

(m+1)m+1 if αn+1 > a and αi < a for all i ∈ {l + 1, . . . , n}
Π(αl+1, . . . , αn+1) otherwise.

By inequality (30), which also holds with “<” in place of “≤”, P can produce
p-values that are impossible for ICPs.

It is easy to check that P is an aggregating p-variable:

• when ϵ ≥ 1
m+1 , Q

m+1(P ≤ ϵ) ≤ ϵ follows from Qm+1(Π ≤ ϵ) ≤ ϵ (since P

improves on Π only when Π = 1
m+1 ),

• when ϵ < 1
m+1 , Q

m+1(P ≤ ϵ) ≤ ϵ follows from the fact that the probability

that Bm+1
p produces exactly one 1 and that the 1 is the last bit is given

by the expression following “=” in (9).

Therefore, IRPA,P is an IRP that strictly dominates the ICP IRPA,Π.
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A.3 Proof of Proposition 6

This proof will show that any separation IRP is a bona fide IRP. The definition
of a separation IRP given in Sect. 5 can be restated as follows. Define E′

K,I to
be the event that the conformal p-value is (K+1)/(m+1), cK,I K-separates the
test nonconformity score, and cK,I′ does not K-separate the test nonconformity
score for any I ′ < I. These events are disjoint, and setting

EK,I := ∪(K′,I′)≤(K,I)E
′
K′,I′ ,

where “≤” is the lexicographic order, we obtain a family of nested events (in
the lexicographic order). The ideal separation IRP then outputs the p-value
PR(EK,I) for a given summary space, threshold array, etc., and the separation
IRP outputs an upper bound on PR(EK,I). The notation E′

K,I and EK,I will
be used repeatedly in the rest of this section. We also define EK,∞ to be the
event that the conformal p-value is (K + 1)/(m+1); EK,∞ = ∪IEK,I provided
the threshold array is dense.

We are required to check that (11) is a p-value. The innermost nested
set E0,1 is defined as the event that c0,1 separates the test nonconformity
score from the calibration nonconformity scores: αn+1 ≥ c0,1 while αi < c0,1
for all i ∈ {l + 1, . . . , n}. (This corresponds to 0-separation as defined ear-
lier.) The probability of this event under randomness is pm0 p1, where p0 is the
probability that A(z1, . . . , zl, Z) ∈ (−∞, c0,1) and p1 is the probability that
A(z1, . . . , zl, Z) ∈ [c0,1,∞). (As before, Z ∼ Q, where Qn+1 is the data-
generating distribution.) This allows us to define

IRP∞(m, 0, 1) = max
(p0,p1)∈∆1

pm0 p1,

in agreement with (11).
For a given I ∈ N1, the event E0,I is defined as one of c0,1, . . . , c0,I sepa-

rating the test nonconformity score from the calibration nonconformity scores.
Let c(1), . . . , c(I) be the sequence c0,1, . . . , c0,I sorted in the ascending order;
we extend it by setting c(0) := −∞ and c(I+1) := ∞. The probability of
the conjunction of the separation and the test nonconformity score lying in
[c(i), c(i+1)) is equal to (p0 + · · · + pi−1)

mpi, where pj is the probability of
A(z1, . . . , zl, Z) ∈ [c(j), c(j+1)). This allows us to set

IRP∞(m, 0, I) =

max
(p0,...,pI)∈∆I

(pm0 p1 + (p0 + p1)
mp2 + · · ·+ (p0 + · · ·+ pI−1)

mpI) ,

which again agrees with (11) (cf. (12)).
Now we assume K ≥ 1. The event EK,I is defined as the disjunction of the

conformal p-value being at most K/(m + 1) and the test nonconformity score
being K-separated from the calibration nonconformity scores by an element of
the set {cK,1, . . . , cK,I}.
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We proceed by induction inK, assuming that (11) works forK ′ < K in place
ofK. On the event EK−1,∞ the conformal p-value is at mostK/(m+1). The ad-
dend in the first line of (11) corresponds to (and upper bounds) the probability
of EK−1,∞ under any power probability measure Qm+1 on Sm+1. Let us check
that the term in the second line of (11) corresponds to the probability of the
event E′′

K,I := EK,I \EK−1,∞ that an element of cK,1, . . . , cK,I (or equivalently,
of c(1), . . . , c(I), which are cK,1, . . . , cK,I rearranged in the ascending order, as
above) K-separates the test nonconformity score. The index i in the second
line of (11) stands for the part of E′′

K,I corresponding to αn+1 ∈ [c(i), c(i+1)),
and the index k stands for the part of that part corresponding to there being
exactly k calibration nonconformity scores αj , j ∈ {l + 1, . . . , n}, such that
αj ∈ [c(i), c(i+1)) and αj ≥ αn+1. The second line of (11) is obtained by the
multiplication of several terms:

• the probability that exactly m−K calibration nonconformity scores with
specified indices are below c(i) is(i−1∑

j=0

pj

)m−K

;

• the probability that exactly K − k of the remaining K calibration non-
conformity scores with specified indices are above c(i+1) is( I∑

j=i+1

pj

)K−k

;

• the probability that the remaining k calibration nonconformity scores and
the test nonconformity score are in [c(i), c(i+1)) is p

k+1
i ;

• the conditional probability (given the event in the previous item) that all
those k calibration nonconformity scores are above the test nonconformity
score is 1/(k+1) (this assumes that the calibration and test nonconformity
scores are all different and is the only place in this proof where we use the
assumption of continuity of the inductive nonconformity scores);

• finally, there are (
m

m−K

)(
K

K − k

)
ways to specify the positions of the indices in the first two items.

Let us check that the convention in the statement of the proposition about
the case I = ∞ agrees with (11) provided the threshold array is dense (or at
least non-trivial in a weak sense). It is easier to use the derivation of (11)
than (11) itself. Letting I → ∞, we can take all pj = 1/(I + 1) equal and
shrinking to 0, and then the probability of E′′

K,I will tend to 1/(m + 1) (the
probability that the rank of the last observation is K + 1 in an IID series of
m + 1 continuously distributed observations). On the other hand, the upper
bound of (K + 1)/(m+ 1) on IRP∞(m,K,∞) is obvious.
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A.4 Proof of Proposition 8

The monotonicity of IRP∞ immediately follows from its definition.
Let us check (14). For K = 0 and I = 2 our optimization problem (see (12))

can be written as

pm0 (1− p0 − p2) + (1− p2)
mp2 → max (32)

(after substituting 1 − p0 − p2 for p1). Setting the partial derivatives of the
objective function in p0 and p2 to 0 we obtain

p0 = 1 +
e−1 − 2

m
+O(m−2), p2 =

1− e−1

m
+O(m−2)

(so that p0+p2 < 1 asymptotically, as it should). Plugging this into the objective
function in (32) gives

IRP∞(m, 0, 2) =

(
1 +

e−1 − 2

m
+O(m−2)

)m(
1

m
+O(m−2)

)
+

(
1 +

e−1 − 1

m
+O(m−2)

)m(
1− e−1

m
+O(m−2)

)
=

exp(e−1 − 2)

m
+
exp(e−1 − 1)(1− e−1)

m
+O(m−2) =

exp(e−1 − 1)

m
+O(m−2).

A.5 Proof of Proposition 11

There is no need to prove (18), since this is a special case of Proposition 13,
which we prove in Sect. A.6.

The addends of the sum over k in the first lines of (19) and (20) give the
probability of the event that the conformal p-value is K/(m + 1) or less if the
distribution of the nonconformity score A(z1, . . . , zl, Z) is (p0, p1, p2) (meaning
that the probability of it taking value j ∈ {0, 1, 2} is pj). The addend in the
second line of (19) is the probability that 1.5K-separates the test nonconformity
score. The two addends in the second line of (19) are the probabilities of the
two disjoint possibilities for 0.5 K-separating the test nonconformity score while
the conformal p-value is (K+1)/(m+1): the first possibility is where αn+1 = 1,
and the second (typically unlikely) possibility is where αn+1 = 2 (in which case
there are no αi = 1 among αl+1, . . . , αn+1).

A.6 Proof sketch of Proposition 13

Let us first check (22). Each addend in the sum over k in (22) is the prob-
ability of the event that the conformal p-value is (k + 1)/(m + 1) (with the
same interpretation of p0, p1, . . . as in previous sections). For a given k, each
addend in the sum over J in (22) is the probability that the conformal p-value
is (k+1)/(m+1), the test nonconformity score is αn+1 = J , m− k calibration
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nonconformity scores at specified positions are less than J , and the remaining
k calibration nonconformity scores are J or more.

The proof of (23) will use the following complementary statement.

Proposition 13′. For arbitrary but fixed L and K and for m → ∞, an optimal
vector p in (22) satisfies

pj ∼
cj
m
, j = 1, . . . , L, p0 = 1−

∑L
j=1 cj

m
+ o(1/m),

where an optimal c = (cj)
L
j=1 ∈ [0,∞)L delivers a solution to the optimization

problem (23).

To establish (23) and Proposition 13′, first of all notice that the max in (23)
is attained: if any of cj tends to infinity, the objective function will tend to 0, so
that we are effectively maximizing over a compact set. Now define new variables
cj , j = 1, . . . , L, by pj = cj/m as suggested by Proposition 13′. Plugging this

into the expression following the max in (22) and assuming p0 = 1−
∑L

j=1 pj →
1, we obtain

K∑
k=0

(
m

k

) L∑
J=1

J−1∑
j=0

pj

m−k

pJ

 L∑
j=J

pj

k

∼
L∑

J=1

pJ

K∑
k=0

mk

k!

1−
L∑

j=J

pj

m L∑
j=J

pj

k

≤
L∑

J=1

cJ
m

K∑
k=0

1

k!
exp

−
L∑

j=J

cj

 L∑
j=J

cj

k

. (33)

The asymptotic equivalence “∼” holds uniformly over all p for which the ex-
pression to its left is m−2 or more: indeed, the addends in the sum

∑
k,J to the

left of “∼” for which
J−1∑
j=0

pj ≤ 1−m−1/2

are negligible since (
1−m−1/2

)m
≤ exp

(
−m1/2

)
shrinks to 0 super-polynomially fast as m → ∞, andJ−1∑

j=0

pj

m−k

∼

J−1∑
j=0

pj

m

=

1−
L∑

j=J

pj

m

for the other addends. Because of the inequality “≤” in the chain (33), we can
assume that (cj) range over a compact set, and then the “≤” can be replaced
by “∼”. It remains to compare the last expression with (22).
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