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Abstract

Randomness (in the sense of being generated in an IID fashion) and exchange-
ability are standard assumptions in nonparametric statistics and machine learn-
ing, and relations between them have been a popular topic of research. This
short paper draws the reader’s attention to the fact that, while for infinite se-
quences of observations the two assumptions are almost indistinguishable, the
difference between them becomes very significant for finite sequences of a given
length.
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1 Introduction

In this paper we will discuss two important assumptions about sequences of
observations, exchangeability and randomness, using the word “randomness” in
a somewhat old-fashioned sense of the individual observations being independent
and identically distributed (following [20, Chap. 7], which used the standard
terminology for its time, and [28]).

The relationship between exchangeability and randomness is very different
in the cases of infinite sequences and finite sequences. In the former case, there
is hardly any difference between the two assumptions. But in the latter, the
difference may be vast. The study of this relationship has a long history, which
will also be briefly reviewed.

We start in Sect. 2 with a discussion of de Finetti’s theorem, which was later
greatly generalized by Hewitt and Savage and other people. One implication of
de Finetti’s theorem is that, for a wide range of observation spaces, there is no
difference between the assumptions of exchangeability and randomness.

In Sect. 3 we move on to the case of finite sequences of observations of a
given length. The problem of relation between exchangeability and random-
ness in this case was implicitly posed by Kolmogorov [17] in his work on the
frequentist foundations of probability. In the context of the algorithmic theory
of randomness, he simply defined randomness as exchangeability for binary se-
quences (in which case the difference between the two assumptions is much less
significant, as discussed in Sect. 4.2). Precise difference for a natural alterna-
tive definition of randomness was explored in work done under his supervision
[26]. In Sect. 3.1 we will see a simple non-binary example where the difference
between exchangeability and randomness is very substantial.

According to Kolmogorov, and it is difficult to argue with his point of view,
infinite sequences are empirically vacuous; we never observe them in reality.
Therefore, he always insisted on either studying finite sequences or at least
keeping them in mind. In fact, de Finetti’s results can also be stated in terms
of finite sequences, provided we consider sequences of different lengths. In this
paper we will briefly discuss two modes of statistical hypothesis testing involving
finite sequences, online and batch; the former corresponds to de Finetti’s setting
and the latter to Kolmogorov’s.

In Sect. 4 we check that the gap between exchangeability and randomness
described in Sect. 3 is the widest possible in some sense. In its first part,
Sect. 4.1, we discuss a simpler and cleaner mathematical result that holds for
an infinite observation space. Then Sect. 4.2 is devoted to more complicated
and perhaps less practically relevant results about finite observation spaces.
However, these results cover Kolmogorov’s binary case. And we will see that
exchangeability and randomness are asymptotically close in this case, at least
according to a relaxed standard proposed and sometimes used by Kolmogorov.

This paper has little novelty, and all of its mathematical results are very
simple. But the reader might find the scale of the difference between exchange-
ability and randomness for infinite observation spaces surprising.
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2 De Finetti’s theorem

Suppose we observe a data sequence z1, z2, · · · ∈ Z consisting of observations
zn ∈ Z that are elements of some measurable space Z, the observation space.
The assumption of randomness is standard in machine learning: the data is
coming from the product probability measure Q∞ for some Q ∈ P(Z), where
P(Z) stands for the measurable space of all probability measures on a mea-
surable space Z (with the σ-algebra generated by the mappings Q 7→ Q(A), A
being an event in Z).

Remark 1. Effects of various distribution shifts have also been widely studied,
but in this paper we concentrate on the basic IID case. In machine learning we
often have observations z = (x, y) consisting of an object x and its label y, but
we do not insist on this.

The more general assumption of exchangeability is that the data is coming
from an exchangeable probability measure R ∈ P(Z∞), i.e., a probability mea-
sure that is invariant w.r. to swapping any pair of observations. The topic of
this section is the closeness of the two assumptions for an infinite, or at least
potentially infinite, data sequences and assuming that Z is a Borel space, i.e., a
measurable space that is isomorphic to a Borel subset of R.

By de Finetti’s classical theorem each exchangeable probability measure R
on R∞ is a mixture of product distributions:

R =

∫
Q∞µ( dQ) (1)

for some µ ∈ P(P(R)). This was established by de Finetti [4, Chap. 4]. Hewitt
and Savage [11, Theorem 7.3 and its discussion later in Sect. 7] note that we can
trivially replace R by any Borel space Z and point out that, to the best of their
knowledge, every measurable space known to have importance in applied science
is Borel. For example, every Polish space (complete separable metric space with
its Borel σ-algebra) is Borel. On the other hand, there exists a separable metric
space with its Borel σ-algebra for which (1) can be violated [8]. Let us assume
in the rest of this paper that the observation space Z is Borel.

It is well known that de Finetti’s theorem fails if we simply replace ∞ by a
finite N in (1); see, e.g., [3, Sect. 4.7.1] (and [6, Sect. 1] for a further discussion
of the extent to which de Finetti’s theorem can fail for N = 2 and Z = {0, 1}).

De Finetti’s theorem plays an important role in the foundations of Bayesian
statistics; see, e.g., [3, Chap. 4]. But its implication in our context is that
the assumptions of exchangeability and randomness are equivalent: if a testing
procedure rejects one of these assumptions, it rejects the other as well. We will
formalize this statement in three different ways.

The simplest way of statistical hypothesis testing is based on critical regions.
To test a composite null hypothesis H (a set of probability measures) at a
significance level ϵ ∈ (0, 1) (such as 1% or 5%), we choose a critical region A at
level ϵ, meaning an event satisfying R(A) ≤ ϵ for all R ∈ H. The hypothesis
H is rejected if we observe A, which must be chosen in advance. Applying
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this to the assumption of exchangeability, critical regions A ⊆ Z∞ for testing
exchangeability at level ϵ are required to satisfy PX(A) ≤ ϵ, where the upper
exchangeability probability of A is defined by

PX(A) := sup
R

R(A), (2)

R ranging over the exchangeable probability measures on Z∞. Similarly, critical
regions A ⊆ Z∞ for testing randomness at level ϵ are required to satisfy PR(A) ≤
ϵ, where the upper randomness probability of A is defined as

PR(A) := sup
Q∈P(Z)

Q∞(A). (3)

By de Finetti’s theorem, PX and PR coincide:

• since every product measure Q∞ is exchangeable, PR ≤ PX;

• on the other hand, since each exchangeable probability measure R has a
representation (1), we have, for each α > 0 and each event A satisfying
PR(A) ≤ α,

PX(A) = sup
R

R(A) ≤ sup
µ,Q

∫
Q∞(A)µ( dQ) ≤ α; (4)

therefore, PX ≤ PR.

We can see that there are exactly the same critical regions at each significance
level under exchangeability and under randomness.

One manifestation of the coincidence of the critical regions under exchange-
ability and randomness is that the two assumptions will produce identical pre-
diction sets

Γ(z1, . . . , zn) :=
{
(zn+1, zn+2, . . . ) : (z1, . . . , zn, zn+1, zn+2, . . . ) /∈ A

}
(5)

for the future observations after observing z1, . . . , zn, where A is a critical region
at some significance level ϵ. Under both exchangeability and randomness, the
coverage probability of the prediction set (5) will be at least 1− ϵ.

There are two popular generalizations of critical regions, p-variables and
e-variables, and both also produce identical results under exchangeability and
randomness. Let us first check this for p-variables. According to the general def-
inition (see, e.g., [22, Definition 1.2]), an exchangeability p-variable is a random
variable P : Z∞ → [0, 1] such that, for all ϵ ∈ (0, 1),

PX(P ≤ ϵ) ≤ ϵ. (6)

Similarly, a randomness p-variable is a random variable P : Z∞ → [0, 1] such
that, for all ϵ ∈ (0, 1),

PR(P ≤ ϵ) ≤ ϵ. (7)
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Since PX = PR, the classes of exchangeability and randomness p-variables coin-
cide.

Again according to the general definition [22, Definition 1.2] (see also [10,
(1)]), an exchangeability e-variable is a measurable function F : Z∞ → [0,∞]
such that EX(F ) ≤ 1, where

EX(F ) := sup
R

∫
F dR, (8)

R ranging over the exchangeable probability measures on Z∞. And a random-
ness e-variable is a measurable function F : Z∞ → [0,∞] such that ER(F ) ≤ 1,
where

ER(F ) := sup
Q∈P(Z)

∫
F dQ∞. (9)

Let us check that EX = ER. Since ER ≤ EX is obvious, we just need to check
EX ≤ ER. Generalizing (4), we have, for each α > 0, each measurable function
F : Z∞ → [0,∞] satisfying ER(F ) ≤ α, and each δ > 0,

EX(F ) ≤
∫

F dR+ δ =

∫ ∫
F dQ∞µ( dQ) + δ ≤ α+ δ, (10)

and so indeed EX ≤ ER. The first inequality in (10) holds for some exchangeable
probability measure R and the second for some µ ∈ P(P(Z)) according to (1).
As EX = ER, the classes of exchangeability and randomness e-variables coincide.

Whatever testing method out of the three we use, we have the same options
for rejecting exchangeability or randomness. The empirical contents of the two
assumptions may be said to coincide, under our assumption of Z being a Borel
space.

3 Finite sequences of observations

In the previous section we saw that, by de Finetti’s theorem, the difference
between the assumptions of exchangeability and randomness disappears. How-
ever, this is a statement about infinite sequences, which we can never observe
in reality. Can we say something similar for finite sequences of observations?

3.1 Batch setting

We start our discussion of finite sequences of observations from the simplest
setting in which we fix the number N of observations and only consider the
sequences of length N , ZN . We call this the batch setting. In this case a chasm
between exchangeability and randomness opens up. Consider the following very
simple critical region A. The N observations are all in the set {1, . . . , N} and
are all different. Under exchangeability, the event A is perfectly possible: its
probability is 1 under some exchangeable probability measure. Defining PX, PR,
EX, and ER as in the previous section (see (2), (3), (8), and (9)) but replacing
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Z∞ with ZN and Q∞ with QN , we can see that PX(A) = 1. The maximum
probability of A under any product measure QN is

N

N

N − 1

N
. . .

1

N
=

N !

NN
∼

√
2πNe−N ; (11)

therefore, it shrinks exponentially fast as N grows. Indeed, the maximum of
QN (A) is achieved for the Q concentrated on {1, . . . , N} and uniformly dis-
tributed on this set. Applying Stirling’s formula in the form of [23] gives

PR(A) < 3
√
Ne−N < 1 = PX(A) (12)

(the second inequality “<” assumes N > 1). For example, suppose we are
interested in significance level ϵ := 10−k for k ≥ 2 (such as k = 2 for high
statistical significance). Solving 3

√
Ne−N ≤ 10−k, we obtain

PR(A) < 10−k < 1 = PX(A)

provided N ≥ 3k + 1. For example, an outcome that is perfectly possible
under exchangeability (PX(A) = 1) becomes highly statistically significant under
randomness for N = 7. The much stricter significance level of “5 sigma”,
approximately 1/(3 × 106), used for announcing discoveries in particle physics
[1] is met starting from N = 22.

Remark 2. A convenient, albeit asymptotically much cruder, version of the
inequality (12) is

PR(A) ≤ 2−N+1 ≤ 1 = PX(A).

Remark 3. The difference between exchangeability and randomness is also man-
ifested by the fact that exchangeability is easy to achieve in practice: we can
just permute randomly our data sequence. However, the resulting sequence may
be very far from being IID.

Similarly to (5), we can invert exchangeability and randomness critical re-
gions in the batch mode and use them for one-step-ahead prediction (whereas
prediction in (5) was infinitely many steps ahead). Given an observed sequence
z1, . . . , zn, we output

Γ(z1, . . . , zn) := {zn+1 : (z1, z2, . . . , zn+1) /∈ A}

as our prediction set for the next observation, where A is a critical region in ZN

with N := n+1; this ensures a coverage probability of at least 1− ϵ, where ϵ is
the significance level used in A. Under randomness, we can produce non-vacuous
(i.e., different from Z) prediction sets at significance level 3

√
Ne−N even in situ-

ations where no non-vacuous prediction sets are possible under exchangeability
at any non-trivial significance level ϵ (i.e., at any ϵ < 1). It is instructive to
compare this with conformal prediction, where non-vacuous prediction sets are
only possible at much larger significance levels of at least 1/N [28, Sect. 11.4.4].
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3.2 Kolmogorov’s and Martin-Löf’s work on Bernoulli se-
quences

The assumptions of randomness and exchangeability, in different guises, have
also played important roles in the foundations of frequentist statistics. The
standard measure-theoretic foundations of probability were put forward in Kol-
mogorov’s Grundbegriffe [14], but Kolmogorov did not believe that they were
sufficient for applications of probability. As he pointed out in the Grundbe-
griffe [14, footnote 4], in his frequentist analysis of the applications of proba-
bility he was following Richard von Mises. However, a big difference between
Kolmogorov’s and von Mises’s approaches was that von Mises’s was based on
infinite sequences, whereas Kolmogorov believed that infinite sequences, being
empirically non-existent, had no place in discussions of real-world applications
of probability. Interestingly, because of this he even objected against publica-
tion in Russian Mathematical Surveys (a journal that he edited at the time) of
a planned paper about infinite random sequences by his student Uspensky and
close collaborators Shen and Semenov; see Kolmogorov’s letter to Uspensky of
June 1983 cited in [24, note 14].

For a long time Kolmogorov believed that no frequentist concept of probabil-
ity can be developed for finite sequences [15, Sect. 1], but in 1963 he published
his first attempt in this direction [15, Sect. 2]. The attempt, however, was
“incomplete” (as he characterizes it in [16, Sect. 4]), and he greatly improved
on it in 1968 [17, Sect. 2] (this paper is based on his 1967 talk). It appears
that the details of Kolmogorov’s improved approach first appeared in print in
Martin-Löf’s 1966 paper [21, Sect. 5].

Both Kolmogorov and Martin-Löf consider binary sequences and define what
they call Bernoulli sequences, i.e., sequences that can be plausibly obtained as
result of IID observations. While their informal explanations clearly show that
they are interested in the assumption of randomness,1 their formal definitions
are about the assumption of exchangeability. Let me give essentially Martin-
Löf’s definition; I will use slightly different terminology, but my definition will
be equivalent to Martin-Löf’s. This definition will rely on some basic notions
of the theory of algorithms, but it will not be used outside this subsection, and
the reader can skip the rest of the subsection without interrupting the flow of
ideas.

Let us define exchangeability p-variables and randomness p-variables as in
the previous section, by (6) and (7), but replacing Z∞ with ZN for a finite
N . We consider families PN , N ∈ {1, 2, . . . }, of exchangeability p-variables
such that PN (x) is upper semicomputable as function of N and x ∈ ZN (where
the upper semicomputability means that, for a computable function f taking
rational values, PN (x) = infk f(N, x, k), k ranging over the natural numbers).
There exists a smallest, to within a constant factor, function (N, x) 7→ PN (x)

1This is a relevant quote from Kolmogorov [17, Sect. 2]: “let us consider how we imagine
a sequence of zeros and ones appearing as the result of independent trials with probability p
of obtaining a one at each trial.”
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of this kind, and Martin-Löf defines

m(x) := − log2 PN (x)

for all binary sequences x ∈ {0, 1}∗, where N is the length of x and logb is
base-b logarithm. This definition is slightly arbitrary, since m(x) is only defined
to within an additive constant, so additive terms of O(1) are typically ignored
in the algorithmic theory of randomness.

Another equivalent definition of m is given by Kolmogorov in [17, Sect. 2]
in terms of his notion of complexity (and Martin-Löf proves the equivalence in
[21, Sect. 5]). A binary sequence x is called a Bernoulli sequence if m(x) is
small; this is an informal notion, but we can prove mathematical results about
the function m (albeit only with the O(1) accuracy).

Replacing the assumption of exchangeability by that of randomness, we get a
function that we denote by mR instead of m. (A natural notation for m in view
of our notations PX and EX would have been mX, but m is what Martin-Löf
used in [21, Sect. 5].)

These definitions can be adapted verbatim to the case where the observation
space Z is {1, 2, . . . } rather than {0, 1}. In this case the example in Sect. 3.1
demonstrating (12) shows that there are sequences xN ∈ ZN , N = 1, 2, . . . ,
such that

m(xN ) = O(1) < N log2 e−
1

2
log2 N +O(1) = mR(xN ),

the inequality holding from some N on; this is stated without proof in [27, The-
orem 4]. We can see that the difference between m and mR is very substantial.

3.3 Versions of de Finetti’s theorem for finite sequences
of observations

De Finetti’s theorem is about infinite sequences of observations, similarly to
von Mises’s frequentist story criticised by Kolmogorov. Does it mean that de
Finetti’s theorem is empirically irrelevant? Not at all. Whereas von Mises’s
story may be hopelessly stuck at infinity (to use Shafer’s expression [25]), de
Finetti’s theorem may be applied to finite sequences, albeit not in the batch
setting of Sect. 3.1. A popular alternative to the batch setting is the online
setting, where we do not fix the number of observations in advance and process
them sequentially, and then the sequence of observations becomes potentially
infinite; therefore, de Finetti’s theorem becomes applicable if we assume ex-
changeability for all those potential observations. For example, in Sect. 6 of
[21] Martin-Löf develops a way of testing exchangeability for all finite prefixes
of a potentially infinite sequence of observations, which means that he is indeed
testing randomness of the overall sequence.

An instructive finite form of de Finetti’s theorem was derived by Diaconis
and Freedman [7] (with an early version given already at the very end of [11]).
Since the assumptions of exchangeability and randomness are so different for
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a fixed length N , we have to consider different lengths for imposing exchange-
ability and for claiming randomness. In the abstract of [6], which states the
Diaconis–Freedman result for binary sequences, Diaconis summarizes this re-
sult thus: “an exchangeable sequence of length r which can be extended to an
exchangeable sequence of length k is almost a mixture of independent exper-
iments, the error going to zero like 1/k”. It is essential that k and r should
be different here, ideally k ≫ r. There have been several recent information-
theoretic developments of this idea; see [12, Corollary 1] for a particularly strong
result.

Another popular finite version of de Finetti’s theorem appears in Dellacherie
and Meyer [5, Chap. 5, 52], who credit this result to P. Cartier; see Kerns
and Székely [13] for a fuller exposition. Theorem 1.1 in [13] says that the
representation (1) holds in the batch setting for any exchangeable probability
measure R on ZN without any restrictions on the measurable space Z if we
allow µ to be a signed measure of bounded variation. This results appears to
be a mathematical curiosity that does not have any implications for statistical
hypothesis testing.

Finally, “de Finetti’s theorem” is sometimes used in a much wider sense
covering representations of exchangeable probability measures as mixtures of
probability measures different from product measures, as in [6, Theorem 1]. We
do not discuss such results as our main interest is relations between exchange-
ability and randomness.

4 Tight inequalities

We first consider the simpler case of an infinite observation space Z and then
move on to the slightly messier case of a finite Z. We always assume that all
singletons in Z are measurable; among other things, this will ensure that the
effective size of a finite Z is equal to its cardinality |Z|.

4.1 The case of infinite Z

In this subsection we will check that the example given in the previous section
(see (11) and (12)) is the most extreme when the observation space Z is infinite.
Namely, we will see that, for any Z (finite or infinite) and any event A in ZN ,

PX(A) ≤ NN

N !
PR(A); (13)

the example demonstrates that the equality here is attained. The length N is
fixed throughout this section.

The equation (13) can be strengthened to the following proposition.

Proposition 4. For any random variable F : ZN → [0,∞),

EX(F ) ≤ NN

N !
ER(F ). (14)
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Suppose |Z| ≥ N . The bound is tight and attained on a non-zero indicator
function. Moreover, there exists an event A in ZN such that

PR(A) =
N !

NN
≤ 1 = PX(A).

Proof. To prove (14), first notice that the left-hand side is the supremum of
the averages of F over all orbits, where an orbit is defined to be the set of all
permutations (not necessarily distinct) of a sequence in ZN ; as a formula,

EX(F ) = sup
z1,...,zN

F̄ (z1, . . . , zN ),

where

F̄ (z1, . . . , zN ) :=
1

N !

∑
π∈SN

F (zπ(1), . . . , zπ(N))

and SN stands for the symmetric group of all permutations of {1, . . . , N} (this
follows from, e.g., [28, Lemma A.3]). Therefore, it suffices to consider only F
that are non-zero on one orbit only. Let F be non-zero on the orbit generated
by a sequence z1, . . . , zN in ZN containing K distinct elements of Z with multi-
plicities n1, . . . , nK (so that n1+· · ·+nK = N). The largest product probability
QN of an element of this orbit is

K∏
k=1

(nk

N

)nk

,

and, therefore,

ER(F ) = F̄ (z1, . . . , zN )
N !

n1! . . . nK !

K∏
k=1

(nk

N

)nk

= EX(F )
N !

n1! . . . nK !

K∏
k=1

(nk

N

)nk

≥ EX(F )
N !

NN
, (15)

where the inequality follows from nn/n! ≥ 1. This completes the proof of (14).
The example in the previous section demonstrates that the bound is tight

when |Z| ≥ N , since we may assume {1, . . . , N} ⊆ Z without further loss of
generality.

4.2 Smaller observation spaces Z

The case |Z| = ∞, or at least |Z| ≫ 1, is probably most relevant in practice
(e.g., even in the case of classification problems, the objects to be classified are
typically complex). In this section, however, we consider the case of a finite
Z and are mostly interested in a small |Z|. This will allow us to cover, e.g.,
Kolmogorov’s and Martin-Löf’s case of binary sequences.

The inequality (14) in Proposition 4 is tight in the case of an infinite Z,
which we relaxed in the statement of the proposition to what is actually used
in the proof, |Z| ≥ N . The following proposition extends (14) to smaller Z.
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Proposition 5. Suppose K := |Z| < N . For any random variable F : ZN →
[0,∞), we have EX(F ) ≤ C ER(F ), where

C :=
NN

N !

K∏
k=1

nk!

nnk

k

(16)

and nk is any balanced split of N into K parts:

nk ∈ {⌊N/K⌋, ⌈N/K⌉} such that

K∑
k=1

nk = N. (17)

The factor C is tight; moreover, there exists an event A ⊆ ZN such that

PR(A) = 1/C ≤ 1 = PX(A). (18)

Proof. Without loss of generality, we set Z := {1, . . . ,K} and proceed as in
the proof of Proposition 4. Let nk be the number of times that k ∈ Z occurs
in z1, . . . , zN (so that now nk = 0 is possible, in which case nnk

k := 1 and
nk! = 1). Now instead of the inequality “≥” in (15) we use the convexity of
the function log(nn/n!) = n logn − log(n!) in n (see Lemma 6 below). If the
split nk, k = 1, . . . ,K, of N is not balanced, we can find nk1

and nk2
such

that nk1 − nk2 ≥ 2. By the convexity, the penultimate expression in the chain
(15) cannot increase if we move nk1 and nk2 towards each other by redefining
nk1

:= nk1
− 1 and nk2

:= nk2
+ 1. Repeating this operation we arrive at a

balanced split.
An event A satisfying (18) can be chosen as the orbit with the counts nk for

k ∈ Z given by (17).

The following lemma was used in the proof of Proposition 5.

Lemma 6. The function n log n− log(n!) of n ∈ {0, 1, . . . } is convex (and even
strictly convex).

Proof. We are required to prove that the function

f(n) := ((n+ 1) log(n+ 1)− log((n+ 1)!))

− (n logn− log(n!)) = n log (1 + 1/n)

is strictly increasing. Extending it to the nonnegative reals, f(x) := x log(1 +
1/x), interpreting log as ln, and differentiating gives

f ′(x) = log

(
1 +

1

x

)
− 1

x+ 1
.

By the strict concavity of log, we have log(1 + u) > u
1+u for u > 0, and substi-

tuting u := 1/x gives f ′(x) > 0 for all x > 0.
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Figure 1: The graphs of log10 C for N = 103 (thick red line, with some values
given on the left) and N = 106 (thin blue line, with values on the right). The
yellow line represents the approximation described in Remark 7.

Figure 1 shows log10 C as a function of K ∈ {1, . . . , N} for two values of
N , 103 (red, with the scale of log10 C on the left) and 106 (blue, with the scale
on the right). Both graphs become horizontal to the right of K := N (not
shown in Fig. 1). We can see that the shapes of the two graphs are very similar.
The blue line (for 106) was drawn after the red one (for 103), and the latter is
thicker in order to be able to see the small difference between the graphs. When
implementing the formula (16) for C, it is convenient to compute the number
of nk = ⌈N/K⌉ in (17) as N mod K.

The vertical dotted lines in Fig. 1 are drawn through the observation N/2
(the right line) and the nearest observation toN/3 (the left one). The qualitative
behaviour of the red and blue lines, namely the strictly exponential growth
(linear on the log scale of Fig. 1) of both graphs between, roughly, N/2 and
N , N/3 and N/2, etc., is easy to understand. When K increases by 1 between
N/2 and N , one of the nk = 2 in (17) gets replaced by two nk, namely 1 and
1. Therefore, the expression for C given by (16) gets multiplied by 22/2! = 2,
and so the slope of the red and blue lines between N/2 and N in Fig. 1 is
log10 2 ≈ 0.301. When K increases by 1 between N/3 and N/2, a block (3, 3)
of two nk in (17) gets replaced by a block (2, 2, 2) of three nk. The expression
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for C given by (16) gets multiplied by(
2!

22

)3

/

(
3!

33

)2

= 34/25,

and so the slope of the red and blue lines between N/3 and N/2 in Fig. 1 is
log10(3

4/25) ≈ 0.403. And when K increases by 1 between N/4 and N/3, a
block (4, 4, 4) of three nk gets replaced by a block (3, 3, 3, 3) of four nk. The
expression for C gets multiplied by(

3!

33

)4

/

(
4!

44

)3

= 219/311,

and so the slope of the red and blue lines immediately to the left of N/3 in
Fig. 1 is log10(2

19/311) ≈ 0.471. The slope keeps increasing as we move left.

Remark 7. Let us replace the decimal logarithms log10 by natural ln in the
graphs shown in Fig. 1 for N ∈ {103, 106}. This will not change the shape of
the graphs and will only change the labels on the axes; the upper limit of the
range of logC will now become close to N (this will be checked in the appendix).
An interesting function is the limit L of these graphs as N → ∞ with both axes
rescaled by dividing by N (so that the slopes remain unchanged). It can be
defined as the continuous piecewise-linear function L : [0, 1] → [0,∞) satisfying
L(0) := 0 and

L′(x) := ln

((
n!

nn

)n+1(
(n+ 1)!

(n+ 1)n+1

)−n
)

for all x ∈
(

1

n+ 1
,
1

n

)
(19)

and for all n ∈ {1, 2, . . . }. As x → 0,

L(x) = −1

2
x lnx+

ln(2π)

2
x+ o(x),

and the right-hand side without the “ + o(x)” and with log10 in place of ln
is shown as the yellow line in Fig. 1. The final value of the approximation

− 1
2x lnx + ln(2π)

2 x at x = 1 is approximately 0.919, which is not so different
from L(1) = 1. We can see that the slope of L(x) is infinity at x = 0.

Another interesting case for a finite Z is where K := |Z| is fixed while the
number of observations N varies. Applying Stirling’s formula to (16) we then
obtain

C = Θ(N (K−1)/2). (20)

This polynomial growth rate as N → ∞ contrasts with the exponential growth
rate for |Z| = ∞. The closeness of EX and ER to within a polynomial factor
(namely, Θ(N (K−1)/2)) implies the closeness of e-variables under exchangeabil-
ity and randomness in the same crude sense; it also implies the closeness of PX

and PR, which in turn implies the closeness of p-variables under exchangeability
and randomness, in the same sense.
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On Kolmogorov’s and Martin-Löf’s log scale, N (K−1)/2 becomes K−1
2 logN ,

and differences of O(logN) are often ignored in the algorithmic theory of ran-
domness; according to Kolmogorov, “we should not be afraid of logarithms (as
well as O(1) terms that we have anyway)”.2 In this sense exchangeability and
being IID nearly coincide for finite sequences as well. However, for |Z| = ∞ the
difference becomes Θ(N) on the logarithmic scale, which is the largest possible
in Kolmogorov’s and Martin-Löf’s binary setting.

More recently the log scale for p-values has been advocated by Greenland,
who called − log2 p the S-value, or p-surprisal, corresponding to a p-value of p;
see, e.g., [9]. There have been no suggestions to ignore logarithms in p-surprisals,
which were designed to be closer to statistical practice. Indeed, from the prac-
tical point of view logarithms are important even for binary sequences: e.g., if
we toss a coin (possibly biased) N := 103 times and get exactly half “heads”,
we will have statistically significant evidence that the tosses are not IID, since
the largest product probability QN of this very simple event is about 2.52%; on
the other hand, the sequence of outcomes may be perfectly exchangeable. The
value of the largest probability can be computed from

PR(A) =
N !

(N/2)!2
2−N ≤ 1 = PX(A), (21)

where A is the event of observing N/2 “heads” (assuming N even).

Remark 8. The case of a fixed K := |Z| with variable N corresponds to the
bottom left corner of Fig. 1. According to (20) (and the end of Remark 7), the
slope of the graph of log10 C in that corner becomes infinite “under microscope”
as N → ∞; namely, we expect the slope to grow as 1

2 log10 N . For N = 103

and N = 106, as used in Fig. 1, this expression gives the slopes of 1.5 and 3,
respectively; more precise values given by (21) are 1.598 and 3.098, respectively.

Figure 2 complements Fig. 1 by plotting log10 C as function of N for a fixed
K explicitly. It shows two ranges for N , N ≤ 103 in the left panel and N ≤ 106

in the right panel; the two panels look similar, and the description to follow
is applicable to either. Let N ∈ {103, 106} be the upper limit of the range
of N . The base graph shows log10 C in black as function of N for K ≥ N .
The remaining 9 graphs consist of two pieces, black and coloured; the graphs
and their labels in the legends are shown in the same order, top to bottom.
Let me describe, for concreteness, the bottom one labelled as K/N = 0.1; this
description will also be applicable, mutatis mutandis, to the other 8 graphs.
The graph corresponds to K = 0.1N and consists of two parts: the values for
N ≤ K are shown in black and the values for N > K in olive. The behaviour
of the graph changes drastically after N = K, which is marked by using a
different colour: the black part grows exponentially fast, while the olive part
grows only polynomially fast (albeit for a polynomial of a high degree, namely
⌈(K − 1)/2⌉ ≥ 50 according to (20)).

2In Russian, “логарифмов не надо бояться, так же как и констант”; recorded by Shen
[24, note 12] and translated by the authors of [24, arXiv version].
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Figure 2: The graphs of log10 C for N = 103 (left panel) and N = 106 (right
panel, using 105 as the unit for the labels on both axes), as described in text.

Let us see why the graphs in Fig. 2 look the way they do. The black graph is
the diagonal of the bounding rectangle in the limitN → ∞. SupposeK = k

10 N ,
k ∈ {1, . . . , 9}, is one of the K marked in Fig. 2. If nK < N < (n+1)K, all nk

in a balanced split (17) are either n or n + 1. Incrementing N by 1 to N + 1
leads to replacing one of the nk = n by nk = n + 1. The relative increment in
the constant C given by (16) is(

(N + 1)N+1

(N + 1)!

(n+ 1)!

(n+ 1)n+1

)
/

(
NN

N !

n!

nn

)
=

(
1 +

1

N

)N (
1 +

1

n

)−n

≈ e

(
1 +

1

n

)−n

(22)

(the “≈” is justified by N > K and all the K marked in Fig. 2 being large, at
least 100).

For n = 1, the last expression in (22) gives the slope of log10 e − log10 2 ≈
0.133 between K and 2K. This is the slope of the full coloured lines for K =
0.9N (blue) to K = 0.5N (purple) and the slope of the first straight segment of
the other coloured lines (strictly speaking, “straight” should be understood as
“approximately straight” because of the “≈” in (22)). The slope of the following
straight segment of the coloured lines for K = 0.4N (brown) to K = 0.1N
(olive) is log10 e−2 log10 1.5 ≈ 0.082. The slope of the following straight segment
for the bottom three coloured lines is log10 e − 3 log10(4/3) ≈ 0.059, etc. It is
clear from (22) that the slope tends to 0 when n → ∞, and we can see that
the bottom line of Fig. 2 is close to being horizontal on the right. If any of the
coloured lines is continued to the right beyond N , it will consist of segments
of exponentially fast growth with decreasing growth rates, which will make the
overall growth rate polynomial.

14



5 Conclusion

Being motivated by the foundations of probability and statistics, de Finetti,
Kolmogorov, and Martin-Löf considered cases where the assumptions of ex-
changeability and randomness are close to each other. However, there are also
cases where the closeness of the two assumptions disappears, including the im-
portant case of finite sequences of a given length for a large observation space.

De Finetti’s theorem has many fascinating generalizations and variations,
and we can ask similar questions about those. One generalization that is espe-
cially close to the subject of this paper concerns weighted exchangeability [2],
which accounts for a known covariate shift. Many more are provided by the
theory of repetitive structures; see, e.g., [19], [28, Part IV], and [3, Chap. 4]
(the last book, however, does not use the terminology of repetitive structures).
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[4] Bruno de Finetti. La prévision, ses lois logiques, ses sources subjectives.
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A Derivation of L(1) = 1

In this appendix we check the statement made in Remark 7, which is equivalent
to L(1) = 1. We can simplify the expression for L′(x) in (19) as

L′(x) = ln(n!) + n(n+ 1) ln
n+ 1

n
− n ln(n+ 1).

Integrating L′ from 0 to 1 gives

L(1) =

∞∑
n=1

(
ln(n!)

n(n+ 1)
+ ln

n+ 1

n
− ln(n+ 1)

n+ 1

)
.
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We are required to show that the partial sums

SN :=

N∑
n=1

ln(n!)

n(n+ 1)
+

N∑
n=1

ln
n+ 1

n
−

N∑
n=1

ln(n+ 1)

n+ 1
(23)

converge to 1 as N → ∞. By telescoping, we can transform the first addend in
(23) as

N∑
n=1

ln(n!)

n(n+ 1)
=

N∑
n=1

n∑
k=1

ln k

n(n+ 1)
=

N∑
k=1

N∑
n=k

ln k

n(n+ 1)

=

N∑
k=1

ln k

(
1

k
− 1

N + 1

)
=

N∑
k=1

ln k

k
− 1

N + 1

N∑
k=1

ln k

(this uses 1
n(n+1) =

1
n − 1

n+1 in the third equality) and the second addend as

N∑
n=1

ln
n+ 1

n
= ln(N + 1).

Plugging this into (23) gives

SN :=

N∑
k=1

ln k

k
− 1

N + 1

N∑
k=1

ln k + ln(N + 1)−
N∑

n=1

ln(n+ 1)

n+ 1

= − ln(N + 1)

N + 1
− ln(N !)

N + 1
+ ln(N + 1) ∼ 1,

where the “=” is obtained by combining the first and last addends in the preced-
ing expression and the definition of N !, and the “∼” is obtained from Stirling’s
formula in the crude form ln(N !) = N lnN −N +O(lnN).
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